Difference between revisions of "009A Sample Midterm 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 11: | Line 11: | ||
| '''1.''' Linearity rules of limits | | '''1.''' Linearity rules of limits | ||
|- | |- | ||
| − | | '''2.''' | + | | '''2.''' <math>\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math> |
|- | |- | ||
|'''3.''' Left and right hand limits | |'''3.''' Left and right hand limits | ||
Revision as of 13:01, 18 February 2017
Find the following limits:
- a) Find provided that
- b) Find
- c) Evaluate
| Foundations: |
|---|
| 1. Linearity rules of limits |
| 2. |
| 3. Left and right hand limits |
Solution:
(a)
| Step 1: |
|---|
| Since |
| we have |
| Step 2: |
|---|
| If we multiply both sides of the last equation by we get |
| Now, using linearity properties of limits, we have |
| Step 3: |
|---|
| Solving for in the last equation, |
| we get |
|
|
(b)
| Step 1: |
|---|
| First, we write |
| Step 2: |
|---|
| Now, we have |
(c)
| Step 1: |
|---|
| When we plug in into |
| we get |
| Thus, |
| is either equal to or |
| Step 2: |
|---|
| To figure out which one, we factor the denominator to get |
| We are taking a right hand limit. So, we are looking at values of |
| a little bigger than (You can imagine values like ) |
| For these values, the numerator will be negative. |
| Also, for these values, will be negative and will be positive. |
| Therefore, the denominator will be negative. |
| Since both the numerator and denominator will be negative (have the same sign), |
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |