Difference between revisions of "009A Sample Midterm 3, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 10: | Line 10: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |'''1.''' What is the relationship between velocity <math>v(t)</math> and position <math>s(t)?</math> |
|- | |- | ||
− | | | + | | <math>v(t)=s'(t)</math> |
|- | |- | ||
− | | | + | |'''2.''' What is the position of the object when it hits the ground? |
+ | |- | ||
+ | | <math>s(t)=0</math> | ||
|} | |} | ||
Revision as of 13:50, 18 February 2017
The position function gives the height (in meters) of an object that has fallen from a height of 200 meters. The velocity at time seconds is given by:
- a) Find the velocity of the object when
- b) At what velocity will the object impact the ground?
Foundations: |
---|
1. What is the relationship between velocity and position |
2. What is the position of the object when it hits the ground? |
Solution:
(a)
Step 1: |
---|
Let be the velocity of the object at time |
Then, we have |
Step 2: |
---|
Now, we factor the numerator to get |
|
(b)
Step 1: |
---|
First, we need to find the time when the object hits the ground. |
This corresponds to |
This give us the equation |
When we solve for we get |
Hence, |
Since represents time, it does not make sense for to be negative. |
Therefore, the object hits the ground at |
Step 2: |
---|
Now, we need the equation for the velocity of the object. |
We have where is the velocity function of the object. |
Hence, |
|
Therefore, the velocity of the object when it hits the ground is |
Final Answer: |
---|
(a) |
(b) |