Difference between revisions of "009A Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' Chain Rule
+
|'''1.''' '''Chain Rule'''
 
|-
 
|-
|'''2.''' Derivatives of trig/ln
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)</math>
 
|-
 
|-
|'''3.''' Quotient Rule
+
|'''2.''' '''Trig Derivatives'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{d}{dx}(\sin x)=\cos x,\quad\frac{d}{dx}(\cos x)=-\sin x</math>
 +
|-
 +
|'''3.''' '''Quotient Rule'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}</math>
 +
|-
 +
|'''4.''' '''Derivative of natural logarithm
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{d}{dx}(\ln x)=\frac{1}{x}</math>
 
|}
 
|}
  

Revision as of 12:43, 18 February 2017

Find the derivatives of the following functions. Do not simplify.

a)
b)
c)


Foundations:  
1. Chain Rule
       
2. Trig Derivatives
       
3. Quotient Rule
       
4. Derivative of natural logarithm
       


Solution:

(a)

Step 1:  
First, we use the Chain Rule to get
       
Step 2:  
Now, we use the Chain Rule again to get

       

(b)

Step 1:  
First, we use the Chain Rule to get
       
Step 2:  
Now, we use the Chain Rule again to get

       

(c)

Step 1:  
First, we use the Quotient Rule to get
       
Step 2:  
Now, we use the Chain Rule to get
       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam