Difference between revisions of "009C Sample Final 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Compute ::<span class="exam">a) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}</math> ::<span class="exam">b) <mat...")
 
Line 1: Line 1:
<span class="exam">Compute
+
<span class="exam"> Consider the function
  
::<span class="exam">a) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}</math>
+
::::<math>f(x)=e^{-\frac{1}{3}x}</math>
  
::<span class="exam">b) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}</math>
+
::<span class="exam">a) Find a formula for the <math>n</math>th derivative <math>f^{(n)}(x)</math> of <math>f</math> and then find <math>f'(3).</math>
 +
 
 +
::<span class="exam">b) Find the Taylor series for <math>f(x)</math> at <math>x_0=3,</math> i.e. write <math>f(x)</math> in the form
 +
 
 +
::::<math>f(x)=\sum_{n=0}^\infty a_n(x-3)^n.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 11:52, 18 February 2017

Consider the function

a) Find a formula for the th derivative of and then find
b) Find the Taylor series for at i.e. write in the form
Foundations:  

Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  
Final Answer:  
   (a)
   (b)

Return to Sample Exam