Difference between revisions of "009C Sample Final 2, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Compute ::<span class="exam">a) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}</math> ::<span class="exam">b) <mat...")
 
Line 1: Line 1:
<span class="exam">Compute
+
<span class="exam">Find <math>n</math> such that the Maclaurin polynomial of degree <math>n</math> of <math>f(x)=\cos(x)</math> approximates <math>\cos \frac{\pi}{3}</math> within 0.0001 of the actual value.
 
 
::<span class="exam">a) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}</math>
 
 
 
::<span class="exam">b) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}</math>
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 11:25, 18 February 2017

Find such that the Maclaurin polynomial of degree of approximates within 0.0001 of the actual value.

Foundations:  

Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  
Final Answer:  
   (a)
   (b)

Return to Sample Exam