Difference between revisions of "009A Sample Final 3, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Compute ::<span class="exam">a) <math style="vertical-align: -14px">\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}</math> ::<span class="exam">b) <math st...")
 
Line 1: Line 1:
<span class="exam">Compute
+
<span class="exam">Boyle's Law states that when a sample of gas is compressed at a constant temperature, the pressure <math>P</math> and volume <math>V</math> satisfy the equation <math>PV=C</math> where <math>C</math> is a constant. Suppose that at a certain instant, the volume is <math>600 \text{ cm}^3,</math> the pressure is <math>150 \text{ kPa},</math> and the pressure is increasing at a rate of <math>20 \text{ kPa/min}.</math> At what rate is the volume decreasing at this instant?
 
 
::<span class="exam">a) <math style="vertical-align: -14px">\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}</math>
 
 
 
::<span class="exam">b) <math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin^2x}{3x}</math>
 
 
 
::<span class="exam">c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}</math>
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 19:35, 17 February 2017

Boyle's Law states that when a sample of gas is compressed at a constant temperature, the pressure and volume satisfy the equation where is a constant. Suppose that at a certain instant, the volume is the pressure is and the pressure is increasing at a rate of At what rate is the volume decreasing at this instant?

Foundations:  

Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam