Difference between revisions of "009A Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 46: Line 46:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>g'(x)=(\sqrt{x})'+\bigg(\frac{1}{\sqrt{x}}\bigg)'+(\sqrt{\pi})'.</math>
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 58: Line 54:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Since <math>\pi</math> is a constant, <math>\sqrt{\pi}</math> is also a constant.
 +
|-
 +
|Hence,
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>(\sqrt{\pi})'=0.</math>
 
|-
 
|-
|
+
|Therefore, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{g'(x)} & = & \displaystyle{(\sqrt{x})'+\bigg(\frac{1}{\sqrt{x}}\bigg)'+(\sqrt{\pi})'}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}x^{\frac{-1}{2}}+\frac{-1}{2}x^{\frac{-3}{2}}+0}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}x^{\frac{-1}{2}}+\frac{-1}{2}x^{\frac{-3}{2}}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 73: Line 77:
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{x^{\frac{4}{5}}[(3x-5)(2x^{-3}+4)+(3)(-x^{-2}+4x)]-(3x-5)(-x^{-2}+4x)(\frac{4}{5}x^{\frac{-1}{5}})}{(x^{\frac{4}{5}})^2}</math>  
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{x^{\frac{4}{5}}[(3x-5)(2x^{-3}+4)+(3)(-x^{-2}+4x)]-(3x-5)(-x^{-2}+4x)(\frac{4}{5}x^{\frac{-1}{5}})}{(x^{\frac{4}{5}})^2}</math>  
 
|-
 
|-
|'''(b)'''  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{1}{2}x^{\frac{-1}{2}}+\frac{-1}{2}x^{\frac{-3}{2}}</math>
 
|}
 
|}
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:43, 17 February 2017

Find the derivatives of the following functions. Do not simplify.

a)
b) for


Foundations:  
1. Quotient Rule
2. Product Rule
3. Power Rule


Solution:

(a)

Step 1:  
Using the Quotient Rule, we have
       
Step 2:  
Now, we use the Product Rule to get

       

(b)

Step 1:  
First, we have
       
Step 2:  
Since is a constant, is also a constant.
Hence,
       
Therefore, we have
       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam