Difference between revisions of "009A Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 30: Line 30:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|
+
|Now, we use the Product Rule to get
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^{\frac{4}{5}}((3x-5)(-x^{-2}+4x))'-(3x-5)(-x^{-2}+4x)(x^{\frac{4}{5}})'}{(x^{\frac{4}{5}})^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{x^{\frac{4}{5}}[(3x-5)(-x^{-2}+4x)'+(3x-5)'(-x^{-2}+4x)]-(3x-5)(-x^{-2}+4x)(\frac{4}{5}x^{\frac{-1}{5}})}{(x^{\frac{4}{5}})^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{x^{\frac{4}{5}}[(3x-5)(2x^{-3}+4)+(3)(-x^{-2}+4x)]-(3x-5)(-x^{-2}+4x)(\frac{4}{5}x^{\frac{-1}{5}})}{(x^{\frac{4}{5}})^2}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 64: Line 71:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{x^{\frac{4}{5}}[(3x-5)(2x^{-3}+4)+(3)(-x^{-2}+4x)]-(3x-5)(-x^{-2}+4x)(\frac{4}{5}x^{\frac{-1}{5}})}{(x^{\frac{4}{5}})^2}</math>
 
|-
 
|-
 
|'''(b)'''  
 
|'''(b)'''  
 
|}
 
|}
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:37, 17 February 2017

Find the derivatives of the following functions. Do not simplify.

a)
b) for


Foundations:  
1. Quotient Rule
2. Product Rule
3. Power Rule


Solution:

(a)

Step 1:  
Using the Quotient Rule, we have
       
Step 2:  
Now, we use the Product Rule to get

       

(b)

Step 1:  
Step 2:  


Final Answer:  
    (a)    
(b)

Return to Sample Exam