Difference between revisions of "009A Sample Midterm 3, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 24: | Line 24: | ||
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{3\sqrt{-2(x+h)+5}-3\sqrt{-2x+5}}{h}}\\ | & = & \displaystyle{\lim_{h\rightarrow 0} \frac{3\sqrt{-2(x+h)+5}-3\sqrt{-2x+5}}{h}}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\lim_{h\rightarrow 0} \frac{3\sqrt{-2x+-2h+5}-3\sqrt{-2x+5}}{h}.} | + | & = & \displaystyle{\lim_{h\rightarrow 0} \frac{3\sqrt{-2x+-2h+5}-3\sqrt{-2x+5}}{h}}\\ |
+ | &&\\ | ||
+ | & = & \displaystyle{3\lim_{h\rightarrow 0} \frac{\sqrt{-2x+-2h+5}-\sqrt{-2x+5}}{h}.} | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
Line 33: | Line 35: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we multiply the numerator and denominator by the conjugate of the numerator. |
+ | |- | ||
+ | |Hence, we have | ||
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{f'(x)} & = & \displaystyle{3\lim_{h\rightarrow 0} \frac{(\sqrt{-2x+-2h+5}-\sqrt{-2x+5})}{h} \frac{(\sqrt{-2x+-2h+5}+\sqrt{-2x+5})}{(\sqrt{-2x+-2h+5}+\sqrt{-2x+5})}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{3\lim_{h\rightarrow 0} \frac{(-2x+-2h+5)-(-2x+5)}{h(\sqrt{-2x+-2h+5}+\sqrt{-2x+5})}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{3\lim_{h\rightarrow 0} \frac{-2h}{h(\sqrt{-2x+-2h+5}+\sqrt{-2x+5})}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{3\lim_{h\rightarrow 0} \frac{-2}{\sqrt{-2x+-2h+5}+\sqrt{-2x+5}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{3\frac{-2}{\sqrt{-2x+5}+\sqrt{-2x+5}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{-3}{\sqrt{-2x+5}}.} | ||
+ | \end{array}</math> | ||
|- | |- | ||
| | | | ||
Line 42: | Line 60: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | <math>\frac{-3}{\sqrt{-2x+5}}</math> |
|- | |- | ||
| | | | ||
|} | |} | ||
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 15:50, 17 February 2017
Use the definition of the derivative to compute for
Foundations: |
---|
Limit Definition of Derivative |
Solution:
Step 1: |
---|
Let |
Using the limit definition of the derivative, we have |
|
Step 2: |
---|
Now, we multiply the numerator and denominator by the conjugate of the numerator. |
Hence, we have |
Final Answer: |
---|