Difference between revisions of "009A Sample Midterm 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 73: Line 73:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
| |Now, we have
+
|Now, we have
 
|-
 
|-
 
|
 
|
Line 91: Line 91:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}} & = & \displaystyle{\lim _{x\rightarrow \infty} \frac{(-2x^3-2x+3)}{(3x^3+3x^2-3)} \frac{(\frac{1}{x^3})}{(\frac{1}{x^3})}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{-2-\frac{2}{x^2}+\frac{3}{x^3}}{3+\frac{3}{x}-\frac{3}{x^3}}}.
 +
\end{array}</math>
 
|}
 
|}
  
Line 99: Line 103:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we use the properties of limits to get
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-2-\frac{2}{x^2}+\frac{3}{x^3}}{3+\frac{3}{x}-\frac{3}{x^3}}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\lim_{x\rightarrow \infty} (-2-\frac{2}{x^2}+\frac{3}{x^3})}{\lim_{x\rightarrow \infty} (3+\frac{3}{x}-\frac{3}{x^3})}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\lim_{x\rightarrow \infty} -2 +\lim_{x\rightarrow \infty} \frac{2}{x^2} +\lim_{x\rightarrow \infty} \frac{3}{x^3}}{\lim_{x\rightarrow \infty} 3+\lim_{x\rightarrow \infty} \frac{3}{x}-\lim_{x\rightarrow \infty}\frac{3}{x^3}}} \\
 +
&&\\
 +
& = & \displaystyle{\frac{-2+0+0}{3+0+0}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-2}{3}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 112: Line 127:
 
|&nbsp; &nbsp; '''(b)'''  &nbsp; &nbsp; <math>\frac{2}{3}</math>
 
|&nbsp; &nbsp; '''(b)'''  &nbsp; &nbsp; <math>\frac{2}{3}</math>
 
|-
 
|-
|'''(c)'''  
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>\frac{-2}{3}</math>
 
|}
 
|}
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:01, 17 February 2017

Find the following limits:

a) If find
b) Find
c) Evaluate


Foundations:  
1. Linearity rules of limits
2. lim sin(x)/x


Solution:

(a)

Step 1:  
First, we have
       
Therefore,
       
Step 2:  
Since we have

       

Multiplying both sides by we get
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have

       

(c)

Step 1:  
First, we have
       
Step 2:  
Now, we use the properties of limits to get

       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam