Difference between revisions of "009A Sample Midterm 3, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 59: | Line 59: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |First, we write |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{\lim_{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(4x)}{\cos(4x)} \frac{1}{\sin(6x)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{x\rightarrow 0} \frac{4}{6} \frac{\sin(4x)}{4x}\frac{6x}{\sin(6x)}\frac{1}{\cos(4x)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{4}{6}\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\frac{6x}{\sin(6x)}\frac{1}{\cos(4x)}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 71: | Line 73: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | | |Now, we have |
− | |||
− | |||
− | |||
− | | | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\lim_{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}} & = & \displaystyle{\frac{4}{6}\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\frac{6x}{\sin(6x)}\frac{1}{\cos(4x)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{4}{6}\bigg(\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{6x}{\sin(6x)}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{1}{\cos(4x)}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{4}{6} (1)(1)(1)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{2}{3}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 103: | Line 110: | ||
| '''(a)''' <math>\lim_{x\rightarrow 3} f(x)=6</math> | | '''(a)''' <math>\lim_{x\rightarrow 3} f(x)=6</math> | ||
|- | |- | ||
− | |'''(b)''' | + | | '''(b)''' <math>\frac{2}{3}</math> |
|- | |- | ||
|'''(c)''' | |'''(c)''' | ||
|} | |} | ||
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 14:07, 17 February 2017
Find the following limits:
- a) If find
- b) Find
- c) Evaluate
Foundations: |
---|
1. Linearity rules of limits |
2. lim sin(x)/x |
Solution:
(a)
Step 1: |
---|
First, we have |
Therefore, |
Step 2: |
---|
Since we have |
|
Multiplying both sides by we get |
(b)
Step 1: |
---|
First, we write |
Step 2: |
---|
Now, we have |
|
(c)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |
(c) |