Difference between revisions of "009A Sample Midterm 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 59: Line 59:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we write
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(4x)}{\cos(4x)} \frac{1}{\sin(6x)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{4}{6} \frac{\sin(4x)}{4x}\frac{6x}{\sin(6x)}\frac{1}{\cos(4x)}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{4}{6}\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\frac{6x}{\sin(6x)}\frac{1}{\cos(4x)}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 71: Line 73:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
| |Now, we have
|-
 
|
 
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}} & = & \displaystyle{\frac{4}{6}\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\frac{6x}{\sin(6x)}\frac{1}{\cos(4x)}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{4}{6}\bigg(\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{6x}{\sin(6x)}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{1}{\cos(4x)}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{4}{6} (1)(1)(1)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2}{3}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 103: Line 110:
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\lim_{x\rightarrow 3} f(x)=6</math>  
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\lim_{x\rightarrow 3} f(x)=6</math>  
 
|-
 
|-
|'''(b)'''
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{2}{3}</math>
 
|-
 
|-
 
|'''(c)'''  
 
|'''(c)'''  
 
|}
 
|}
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 14:07, 17 February 2017

Find the following limits:

a) If find
b) Find
c) Evaluate


Foundations:  
1. Linearity rules of limits
2. lim sin(x)/x


Solution:

(a)

Step 1:  
First, we have
       
Therefore,
       
Step 2:  
Since we have

       

Multiplying both sides by we get
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have

       

(c)

Step 1:  
Step 2:  


Final Answer:  
    (a)    
    (b)    
(c)

Return to Sample Exam