Difference between revisions of "009A Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 71: Line 71:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we use the Quotient Rule to get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>h'(x)=\frac{\ln(x^2+1)((5x^2+7x)^2)'-(5x^2+7x)^2(\ln(x^2+1))'}{(\ln(x^2+1))^2}.</math>
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 83: Line 79:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Now, we use the Chain Rule to get
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{h'(x)} & = & \displaystyle{\frac{\ln(x^2+1)((5x^2+7x)^2)'-(5x^2+7x)^2(\ln(x^2+1))'}{(\ln(x^2+1))^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\ln(x^2+1)2(5x^2+7x)(5x^2+7x)'-(5x^2+7x)^2\frac{1}{x^2+1}(x^2+1)'}{(\ln(x^2+1))^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\ln(x^2+1)2(5x^2+7x)(10x+7)-(5x^2+7x)^2\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 100: Line 98:
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\cos(\cos(e^x))(-\sin(e^x))(e^x)</math>
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\cos(\cos(e^x))(-\sin(e^x))(e^x)</math>
 
|-
 
|-
|'''(c)'''  
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>\frac{\ln(x^2+1)2(5x^2+7x)(10x+7)-(5x^2+7x)^2\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}</math>
 
|}
 
|}
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:45, 17 February 2017

Find the derivatives of the following functions. Do not simplify.

a)
b)
c)


Foundations:  
1. Chain Rule
2. Derivatives of trig/ln
3. Quotient Rule


Solution:

(a)

Step 1:  
First, we use the Chain Rule to get
       
Step 2:  
Now, we use the Chain Rule again to get

       

(b)

Step 1:  
First, we use the Chain Rule to get
       
Step 2:  
Now, we use the Chain Rule again to get

       

(c)

Step 1:  
First, we use the Quotient Rule to get
       
Step 2:  
Now, we use the Chain Rule to get
       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam