Difference between revisions of "009A Sample Midterm 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 21: | Line 21: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | ||We begin by noticing that we plug in <math>x=2</math> into |
| + | |- | ||
| + | | <math>\frac{\sqrt{x^2+12}-4}{x-2},</math> | ||
|- | |- | ||
| − | | | + | |we get <math>\frac{0}{0}.</math> |
|} | |} | ||
| Line 29: | Line 31: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, we multiply the numerator and denominator by the conjugate of the numerator. |
| + | |- | ||
| + | |Hence, we have | ||
|- | |- | ||
| − | | | + | | <math>\begin{array}{rcl} |
| + | \displaystyle{\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}} & = & \displaystyle{\lim_{x\rightarrow 2} \frac{(\sqrt{x^2+12}-4)}{(x-2)}\frac{(\sqrt{x^2+12}+4)}{(\sqrt{x^2+12}+4)}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{x\rightarrow 2} \frac{(x^2+12)-16}{(x-2)(\sqrt{x^2+12}+4)}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{x\rightarrow 2} \frac{x^2-4}{(x-2)(\sqrt{x^2+12}+4)}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{x\rightarrow 2} \frac{(x-2)(x+2)}{(x-2)(\sqrt{x^2+12}+4)}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{x\rightarrow 2} \frac{x+2}{\sqrt{x^2+12}+4}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{4}{8}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{1}{2}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 88: | Line 106: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' | + | | '''(a)''' <math>\frac{1}{2}</math> |
|- | |- | ||
|'''(b)''' | |'''(b)''' | ||
Revision as of 10:31, 17 February 2017
Evaluate the following limits.
- a) Find
- b) Find
- c) Evaluate
| Foundations: |
|---|
| 1. lim sinx/x |
| 2. Left and right hand limit |
Solution:
(a)
| Step 1: |
|---|
| We begin by noticing that we plug in into |
| we get |
| Step 2: |
|---|
| Now, we multiply the numerator and denominator by the conjugate of the numerator. |
| Hence, we have |
(b)
| Step 1: |
|---|
| Step 2: |
|---|
(c)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |