Difference between revisions of "009A Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 22: Line 22:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Using the Product Rule, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>f'(x)=(\sqrt{x})'(x^2+2)+\sqrt{x}(x^2+2)'.</math>
 
|}
 
|}
  
Line 30: Line 30:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{(\sqrt{x})'(x^2+2)+\sqrt{x}(x^2+2)'}\\
 +
&&\\
 +
& = & \displaystyle{\bigg(\frac{1}{2}x^{-\frac{1}{2}}\bigg)(x^2+2)+\sqrt{x}(2x).}
 +
\end{array}</math>
 
|}
 
|}
  
Line 88: Line 92:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\bigg(\frac{1}{2}x^{-\frac{1}{2}}\bigg)(x^2+2)+\sqrt{x}(2x)</math>
 
|-
 
|-
 
|'''(b)'''  
 
|'''(b)'''  

Revision as of 10:22, 16 February 2017

Find the derivatives of the following functions. Do not simplify.

a)
b) where
c)


Foundations:  
1. Product Rule
2. Quotient Rule
3. Chain Rule

Solution:

(a)

Step 1:  
Using the Product Rule, we have
       
Step 2:  
Now, we have
       

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  
Final Answer:  
    (a)    
(b)
(c)

Return to Sample Exam