Difference between revisions of "009A Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 91: Line 91:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|From (a) and (b), we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^-}f(x)=1</math>
 
|-
 
|-
|
+
|and
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^+}f(x)=1.</math>
 
|}
 
|}
  
Line 103: Line 103:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Since
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^-}f(x)=\lim_{x\rightarrow 1^+}f(x)=1,</math>
 
|-
 
|-
|
+
|we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1}f(x)=1.</math>
 
|}
 
|}
  
Line 116: Line 116:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|From (c), we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1}f(x)=1.</math>
 
|-
 
|-
|
+
|Also,
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>f(1)=\sqrt{1}=1.</math>
 
|}
 
|}
  
Line 128: Line 128:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Since
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1}f(x)=f(1),</math>
 
|-
 
|-
|
+
|<math>f(x)</math> is continuous at <math>x=1.</math>
 
|-
 
|-
 
|
 
|
Line 144: Line 144:
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>1</math>
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|-
|'''(c)'''
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|-
|'''(d)'''  
+
|&nbsp; &nbsp; '''(d)''' &nbsp; &nbsp; <math>f(x)</math> is continuous at <math>x=1</math> since <math>\lim_{x\rightarrow 1}f(x)=f(1)</math>
 
|}
 
|}
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 09:58, 16 February 2017

Consider the following function

a) Find
b) Find
c) Find
d) Is continuous at Briefly explain.


Foundations:  
1. Left hand/right hand limits
2. Definition of limit in terms of right and left
3. Definition of continuous

Solution:

(a)

Step 1:  
Notice that we are calculating a left hand limit.
Thus, we are looking at values of that are smaller than
Using the definition of , we have
       
Step 2:  
Now, we have

       

(b)

Step 1:  
Notice that we are calculating a right hand limit.
Thus, we are looking at values of that are bigger than
Using the definition of , we have
       
Step 2:  
Now, we have

       

(c)

Step 1:  
From (a) and (b), we have
       
and
       
Step 2:  
Since
       
we have
       

(d)

Step 1:  
From (c), we have
       
Also,
       
Step 2:  
Since
       
is continuous at
Final Answer:  
    (a)    
    (b)    
    (c)    
    (d)     is continuous at since

Return to Sample Exam