Difference between revisions of "009A Sample Midterm 1, Problem 1"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
Kayla Murray (talk | contribs)  | 
				Kayla Murray (talk | contribs)   | 
				||
| Line 9: | Line 9: | ||
!Foundations:      | !Foundations:      | ||
|-  | |-  | ||
| − | |    | + | | '''1.''' Linearity rules of limits  | 
|-  | |-  | ||
| − | |  | + | | '''2.''' Limit sin(x)/x  | 
| − | |||
|-  | |-  | ||
| − | |  | + | |'''3.''' Left and right hand limits  | 
| − | |||
|}  | |}  | ||
| Line 24: | Line 22: | ||
!Step 1:      | !Step 1:      | ||
|-  | |-  | ||
| − | |  | + | |Since <math>\lim_{x\rightarrow 2} x =2\ne 0,</math>  | 
| + | |-  | ||
| + | |we have  | ||
|-  | |-  | ||
| − | |  | + | |        <math>\begin{array}{rcl}  | 
| + | \displaystyle{5} & = & \displaystyle{\lim _{x\rightarrow 2} \bigg[\frac{4-g(x)}{x}\bigg]}\\  | ||
| + | &&\\  | ||
| + | & = & \displaystyle{\frac{\lim_{x\rightarrow 2} (4-g(x))}{\lim_{x\rightarrow 2} x}}\\  | ||
| + | &&\\  | ||
| + | & = & \displaystyle{\frac{\lim_{x\rightarrow 2} (4-g(x))}{2}.}  | ||
| + | \end{array}</math>  | ||
|}  | |}  | ||
| Line 32: | Line 38: | ||
!Step 2:    | !Step 2:    | ||
|-  | |-  | ||
| − | |  | + | |If we multiply both sides of the last equation by <math>2,</math> we get  | 
| + | |-  | ||
| + | |        <math>10=\lim_{x\rightarrow 2} (4-g(x)).</math>  | ||
| + | |-  | ||
| + | |Now, using linearity properties of limits, we have  | ||
| + | |-  | ||
| + | |        <math>\begin{array}{rcl}  | ||
| + | \displaystyle{10} & = & \displaystyle{\lim_{x\rightarrow 2} 4 -\lim_{x\rightarrow 2}g(x)}\\  | ||
| + | &&\\  | ||
| + | & = & \displaystyle{4-\lim_{x\rightarrow 2} g(x).}\\  | ||
| + | \end{array}</math>  | ||
| + | |}  | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
| + | !Step 3:    | ||
| + | |-  | ||
| + | |Solving for <math>\lim_{x\rightarrow 2} g(x)</math> in the last equation,  | ||
| + | |-  | ||
| + | |we get  | ||
|-  | |-  | ||
|  | |  | ||
| + |         <math> \lim_{x\rightarrow 2} g(x)=-6.</math>  | ||
|}  | |}  | ||
| Line 91: | Line 116: | ||
!Final Answer:      | !Final Answer:      | ||
|-  | |-  | ||
| − | |'''(a)'''    | + | |    '''(a)'''     <math> \lim_{x\rightarrow 2} g(x)=-6</math>   | 
|-  | |-  | ||
|'''(b)'''    | |'''(b)'''    | ||
Revision as of 08:14, 16 February 2017
Find the following limits:
- a) Find provided that
 - b) Find
 - c) Evaluate
 
| Foundations: | 
|---|
| 1. Linearity rules of limits | 
| 2. Limit sin(x)/x | 
| 3. Left and right hand limits | 
Solution:
(a)
| Step 1: | 
|---|
| Since | 
| we have | 
| Step 2: | 
|---|
| If we multiply both sides of the last equation by we get | 
| Now, using linearity properties of limits, we have | 
| Step 3: | 
|---|
| Solving for in the last equation, | 
| we get | 
| 
 
  | 
(b)
| Step 1: | 
|---|
| Step 2: | 
|---|
(c)
| Step 1: | 
|---|
| Step 2: | 
|---|
| Final Answer: | 
|---|
| (a) | 
| (b) | 
| (c) |