Difference between revisions of "009A Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|  
+
| '''1.''' Linearity rules of limits
 
|-
 
|-
|
+
| '''2.''' Limit sin(x)/x
::
 
 
|-
 
|-
|
+
|'''3.''' Left and right hand limits
::
 
 
|}
 
|}
  
Line 24: Line 22:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Since <math>\lim_{x\rightarrow 2} x =2\ne 0,</math>
 +
|-
 +
|we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{5} & = & \displaystyle{\lim _{x\rightarrow 2} \bigg[\frac{4-g(x)}{x}\bigg]}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\lim_{x\rightarrow 2} (4-g(x))}{\lim_{x\rightarrow 2} x}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\lim_{x\rightarrow 2} (4-g(x))}{2}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 32: Line 38:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|If we multiply both sides of the last equation by <math>2,</math> we get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>10=\lim_{x\rightarrow 2} (4-g(x)).</math>
 +
|-
 +
|Now, using linearity properties of limits, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{10} & = & \displaystyle{\lim_{x\rightarrow 2} 4 -\lim_{x\rightarrow 2}g(x)}\\
 +
&&\\
 +
& = & \displaystyle{4-\lim_{x\rightarrow 2} g(x).}\\
 +
\end{array}</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Solving for <math>\lim_{x\rightarrow 2} g(x)</math> in the last equation,
 +
|-
 +
|we get
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math> \lim_{x\rightarrow 2} g(x)=-6.</math>
 
|}
 
|}
  
Line 91: Line 116:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math> \lim_{x\rightarrow 2} g(x)=-6</math>
 
|-
 
|-
 
|'''(b)'''  
 
|'''(b)'''  

Revision as of 09:14, 16 February 2017

Find the following limits:

a) Find provided that
b) Find
c) Evaluate


Foundations:  
1. Linearity rules of limits
2. Limit sin(x)/x
3. Left and right hand limits

Solution:

(a)

Step 1:  
Since
we have
       
Step 2:  
If we multiply both sides of the last equation by we get
       
Now, using linearity properties of limits, we have
       
Step 3:  
Solving for in the last equation,
we get

       

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  


Final Answer:  
    (a)    
(b)
(c)

Return to Sample Exam