Difference between revisions of "009C Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|A geometric series <math>\sum_{n=0}^{\infty} ar^n</math> converges if <math>|r|<1.</math>
+
|A geometric series <math>\sum_{n=0}^{\infty} ar^n</math> converges if <math style="vertical-align: -6px">|r|<1.</math>
 
|}
 
|}
  
Line 21: Line 21:
 
|First, we notice that <math>\sum_{n=0}^\infty c_nx^n</math> is a geometric series.
 
|First, we notice that <math>\sum_{n=0}^\infty c_nx^n</math> is a geometric series.
 
|-
 
|-
|We have <math>r=x.</math>
+
|We have <math style="vertical-align: -1px">r=x.</math>
 
|-
 
|-
 
|Since this series converges,
 
|Since this series converges,
Line 33: Line 33:
 
|The series <math>\sum_{n=0} c_n\bigg(\frac{x}{2}\bigg)^n</math> is also a geometric series.
 
|The series <math>\sum_{n=0} c_n\bigg(\frac{x}{2}\bigg)^n</math> is also a geometric series.
 
|-
 
|-
|For this series, <math>r=\frac{x}{2}.</math>
+
|For this series, <math style="vertical-align: -13px">r=\frac{x}{2}.</math>
 
|-
 
|-
 
|Now, we notice
 
|Now, we notice
Line 46: Line 46:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|since <math>|x|<1.</math>  
+
|since <math style="vertical-align: -5px">|x|<1.</math>  
 
|-
 
|-
| Since <math>|r|<1,</math> this series converges.
+
| Since <math style="vertical-align: -5px">|r|<1,</math> this series converges.
 
|}
 
|}
  
Line 57: Line 57:
 
|First, we notice that <math>\sum_{n=0}^\infty c_nx^n</math> is a geometric series.
 
|First, we notice that <math>\sum_{n=0}^\infty c_nx^n</math> is a geometric series.
 
|-
 
|-
|We have <math>r=x.</math>
+
|We have <math style="vertical-align: -1px">r=x.</math>
 
|-
 
|-
 
|Since this series converges,
 
|Since this series converges,
Line 69: Line 69:
 
|The series <math>\sum_{n=0}^\infty c_n(-x)^n</math> is also a geometric series.
 
|The series <math>\sum_{n=0}^\infty c_n(-x)^n</math> is also a geometric series.
 
|-
 
|-
|For this series, <math>r=-x.</math>
+
|For this series, <math style="vertical-align: -1px">r=-x.</math>
 
|-
 
|-
 
|Now, we notice
 
|Now, we notice
Line 82: Line 82:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|since <math>|x|<1.</math>  
+
|since <math style="vertical-align: -5px">|x|<1.</math>  
 
|-
 
|-
|Since <math>|r|<1,</math> this series converges.
+
|Since <math style="vertical-align: -5px">|r|<1,</math> this series converges.
 
|}
 
|}
  

Revision as of 16:51, 15 February 2017

If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_nx^n} converges, does it follow that the following series converges?

a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n}
b)


Foundations:  
A geometric series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} ar^n} converges if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r|<1.}


Solution:

(a)

Step 1:  
First, we notice that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_nx^n} is a geometric series.
We have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=x.}
Since this series converges,
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r|=|x|<1.}
Step 2:  
The series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0} c_n\bigg(\frac{x}{2}\bigg)^n} is also a geometric series.
For this series, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=\frac{x}{2}.}
Now, we notice

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{|r|} & = & \displaystyle{\bigg|\frac{x}{2}\bigg|}\\ &&\\ & = & \displaystyle{\frac{|x|}{2}}\\ &&\\ & < & \displaystyle{\frac{1}{2}} \end{array}}

since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |x|<1.}
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r|<1,} this series converges.

(b)

Step 1:  
First, we notice that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_nx^n} is a geometric series.
We have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=x.}
Since this series converges,
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r|=|x|<1.}
Step 2:  
The series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_n(-x)^n} is also a geometric series.
For this series, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-x.}
Now, we notice

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{|r|} & = & \displaystyle{|-x|}\\ &&\\ & = & \displaystyle{|x|}\\ &&\\ & < & \displaystyle{1} \end{array}}

since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |x|<1.}
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r|<1,} this series converges.


Final Answer:  
    (a)     The series converges.
    (b)     The series converges.

Return to Sample Exam