Difference between revisions of "009C Sample Midterm 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
| Root Test
+
|'''1.''' '''Root Test'''
 
|-
 
|-
| Ratio Test
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math>\{a_n\}</math> be a positive sequence and let <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} (a_n)^{\frac{1}{n}}=L.</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L<1,</math> the series converges.
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L>1,</math> the series is divergent.
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive.
 +
|-
 +
|'''2.''' '''Ratio Test'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent.
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L>1,</math> the series is divergent.
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive.
 
|}
 
|}
  
Line 28: Line 51:
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\lim_{n\rightarrow \infty} \sqrt{|a_n|}} & = & \displaystyle{\lim_{n\rightarrow \infty} \sqrt{|n^nx^n|}}\\
+
\displaystyle{\lim_{n\rightarrow \infty} \sqrt[n]{|a_n|}} & = & \displaystyle{\lim_{n\rightarrow \infty} \sqrt[n]{|n^nx^n|}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} |n^nx^n|^{\frac{1}{n}}}\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} |n^nx^n|^{\frac{1}{n}}}\\
Line 38: Line 61:
 
& = & \displaystyle{|x|\lim_{n\rightarrow \infty} n}\\
 
& = & \displaystyle{|x|\lim_{n\rightarrow \infty} n}\\
 
&&\\
 
&&\\
& = & \displaystyle{\infty}
+
& = & \displaystyle{\infty.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 45: Line 68:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|This means that as long as <math>x\ne 0,</math> this series diverges.
+
|This means that as long as <math style="vertical-align: -6px">x\ne 0,</math> this series diverges.
 
|-
 
|-
|Hence, the radius of convergence is <math>R=0</math> and  
+
|Hence, the radius of convergence is <math style="vertical-align: -1px">R=0</math> and  
 
|-
 
|-
|the interval of convergence is <math>\{0\}.</math>
+
|the interval of convergence is <math style="vertical-align: -5px">\{0\}.</math>
 
|-
 
|-
 
|
 
|
Line 63: Line 86:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\lim_{n\rightarrow \infty}|\frac{a_{n+1}}{a_n}|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{(x+1)^{n+1}}{\sqrt{n+1}}\frac{\sqrt{n}}{(x+1)^n}\bigg|}\\
+
\displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{(x+1)^{n+1}}{\sqrt{n+1}}\frac{\sqrt{n}}{(x+1)^n}\bigg|}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| (x+1)\frac{\sqrt{n}}{\sqrt{n+1}}\bigg|}\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| (x+1)\frac{\sqrt{n}}{\sqrt{n+1}}\bigg|}\\
Line 82: Line 105:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|The Ratio Test tells us this series is absolutely convergent if <math>|x+1|<1.</math>
+
|The Ratio Test tells us this series is absolutely convergent if <math style="vertical-align: -4px">|x+1|<1.</math>
 
|-
 
|-
|Hence, the Radius of Convergence of this series is <math>R=1.</math>
+
|Hence, the Radius of Convergence of this series is <math style="vertical-align: -1px">R=1.</math>
 
|}
 
|}
  
Line 92: Line 115:
 
|Now, we need to determine the interval of convergence.  
 
|Now, we need to determine the interval of convergence.  
 
|-
 
|-
|First, note that <math>|x+1|<1</math> corresponds to the interval <math>(-2,0).</math>
+
|First, note that <math style="vertical-align: -4px">|x+1|<1</math> corresponds to the interval <math style="vertical-align: -4px">(-2,0).</math>
 
|-
 
|-
 
|To obtain the interval of convergence, we need to test the endpoints of this interval
 
|To obtain the interval of convergence, we need to test the endpoints of this interval
 
|-
 
|-
|for convergence since the Ratio Test is inconclusive when <math>R=1.</math>
+
|for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -1px">R=1.</math>
 
|}
 
|}
  
Line 102: Line 125:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
|First, let <math>x=0.</math>  
+
|First, let <math style="vertical-align: -1px">x=0.</math>  
 
|-
 
|-
 
|Then, the series becomes <math>\sum_{n=0}^\infty \frac{1}{\sqrt{n}}.</math>
 
|Then, the series becomes <math>\sum_{n=0}^\infty \frac{1}{\sqrt{n}}.</math>
 
|-
 
|-
|We note that this is a <math>p</math>-series with <math>p=\frac{1}{2}.</math>
+
|We note that this is a <math style="vertical-align: -3px">p</math>-series with <math style="vertical-align: -12px">p=\frac{1}{2}.</math>
 
|-
 
|-
 
|Since <math>p<1,</math> the series diverges.
 
|Since <math>p<1,</math> the series diverges.
 
|-
 
|-
|Hence, we do not include <math>x=0</math> in the interval.
+
|Hence, we do not include <math style="vertical-align: -1px">x=0</math> in the interval.
 
|}
 
|}
  
Line 116: Line 139:
 
!Step 5: &nbsp;
 
!Step 5: &nbsp;
 
|-
 
|-
|Now, let <math>x=-2.</math>
+
|Now, let <math style="vertical-align: -1px">x=-2.</math>
 
|-
 
|-
 
|Then, the series becomes <math>\sum_{n=0}^\infty (-1)^n \frac{1}{\sqrt{n}}.</math>
 
|Then, the series becomes <math>\sum_{n=0}^\infty (-1)^n \frac{1}{\sqrt{n}}.</math>
Line 122: Line 145:
 
|This series is alternating.  
 
|This series is alternating.  
 
|-
 
|-
|Let <math>b_n=\frac{1}{\sqrt{n}}.</math>
+
|Let <math style="vertical-align: -20px">b_n=\frac{1}{\sqrt{n}}.</math>
 
|-
 
|-
 
|The sequence <math>\{b_n\}</math> is decreasing since
 
|The sequence <math>\{b_n\}</math> is decreasing since
Line 128: Line 151:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math>
 
|-
 
|-
|for all <math>n\ge 1.</math>
+
|for all <math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|-
 
|Also,
 
|Also,
Line 136: Line 159:
 
|Therefore, the series converges by the Alternating Series Test.
 
|Therefore, the series converges by the Alternating Series Test.
 
|-
 
|-
|Hence, we include <math>x=-2</math> in our interval of convergence.
+
|Hence, we include <math style="vertical-align: -1px">x=-2</math> in our interval of convergence.
 
|}
 
|}
  
Line 142: Line 165:
 
!Step 6: &nbsp;
 
!Step 6: &nbsp;
 
|-
 
|-
|The interval of convergence is <math>[-2,0).</math>
+
|The interval of convergence is <math style="vertical-align: -4px">[-2,0).</math>
 
|}
 
|}
  
Line 149: Line 172:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The radius of convergence is <math>R=0</math> and the interval of convergence is <math>\{0\}.</math>
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The radius of convergence is <math style="vertical-align: -1px">R=0</math> and the interval of convergence is <math>\{0\}.</math>
 
|-
 
|-
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; The radius of convergence is <math>R=1</math> and the interval fo convergence is <math>[-2,0).</math>
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; The radius of convergence is <math style="vertical-align: -1px">R=1</math> and the interval fo convergence is <math style="vertical-align: -4px">[-2,0).</math>
 
|}
 
|}
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:39, 15 February 2017

Find the radius of convergence and interval of convergence of the series.

a)
b)


Foundations:  
1. Root Test
        Let be a positive sequence and let
        Then,
        If the series converges.

        If the series is divergent.

        If the test is inconclusive.

2. Ratio Test
        Let be a series and
        Then,

        If the series is absolutely convergent.

        If the series is divergent.

        If the test is inconclusive.


Solution:

(a)

Step 1:  
We begin by applying the Root Test.
We have

       

Step 2:  
This means that as long as this series diverges.
Hence, the radius of convergence is and
the interval of convergence is

(b)

Step 1:  
We first use the Ratio Test to determine the radius of convergence.
We have
       
Step 2:  
The Ratio Test tells us this series is absolutely convergent if
Hence, the Radius of Convergence of this series is
Step 3:  
Now, we need to determine the interval of convergence.
First, note that corresponds to the interval
To obtain the interval of convergence, we need to test the endpoints of this interval
for convergence since the Ratio Test is inconclusive when
Step 4:  
First, let
Then, the series becomes
We note that this is a -series with
Since the series diverges.
Hence, we do not include in the interval.
Step 5:  
Now, let
Then, the series becomes
This series is alternating.
Let
The sequence is decreasing since
       
for all
Also,
       
Therefore, the series converges by the Alternating Series Test.
Hence, we include in our interval of convergence.
Step 6:  
The interval of convergence is


Final Answer:  
    (a)     The radius of convergence is and the interval of convergence is
    (b)     The radius of convergence is and the interval fo convergence is

Return to Sample Exam