Difference between revisions of "009C Sample Midterm 2, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 8: | Line 8: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | Root Test | + | |'''1.''' '''Root Test''' |
|- | |- | ||
− | | Ratio Test | + | | Let <math>\{a_n\}</math> be a positive sequence and let <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} (a_n)^{\frac{1}{n}}=L.</math> |
+ | |- | ||
+ | | Then, | ||
+ | |- | ||
+ | | If <math style="vertical-align: -4px">L<1,</math> the series converges. | ||
+ | |- | ||
+ | | | ||
+ | If <math style="vertical-align: -4px">L>1,</math> the series is divergent. | ||
+ | |- | ||
+ | | | ||
+ | If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive. | ||
+ | |- | ||
+ | |'''2.''' '''Ratio Test''' | ||
+ | |- | ||
+ | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> | ||
+ | |- | ||
+ | | Then, | ||
+ | |- | ||
+ | | | ||
+ | If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent. | ||
+ | |- | ||
+ | | | ||
+ | If <math style="vertical-align: -4px">L>1,</math> the series is divergent. | ||
|- | |- | ||
| | | | ||
+ | If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive. | ||
|} | |} | ||
Line 28: | Line 51: | ||
| | | | ||
<math>\begin{array}{rcl} | <math>\begin{array}{rcl} | ||
− | \displaystyle{\lim_{n\rightarrow \infty} \sqrt{|a_n|}} & = & \displaystyle{\lim_{n\rightarrow \infty} \sqrt{|n^nx^n|}}\\ | + | \displaystyle{\lim_{n\rightarrow \infty} \sqrt[n]{|a_n|}} & = & \displaystyle{\lim_{n\rightarrow \infty} \sqrt[n]{|n^nx^n|}}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\lim_{n\rightarrow \infty} |n^nx^n|^{\frac{1}{n}}}\\ | & = & \displaystyle{\lim_{n\rightarrow \infty} |n^nx^n|^{\frac{1}{n}}}\\ | ||
Line 38: | Line 61: | ||
& = & \displaystyle{|x|\lim_{n\rightarrow \infty} n}\\ | & = & \displaystyle{|x|\lim_{n\rightarrow \infty} n}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\infty} | + | & = & \displaystyle{\infty.} |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 45: | Line 68: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |This means that as long as <math>x\ne 0,</math> this series diverges. | + | |This means that as long as <math style="vertical-align: -6px">x\ne 0,</math> this series diverges. |
|- | |- | ||
− | |Hence, the radius of convergence is <math>R=0</math> and | + | |Hence, the radius of convergence is <math style="vertical-align: -1px">R=0</math> and |
|- | |- | ||
− | |the interval of convergence is <math>\{0\}.</math> | + | |the interval of convergence is <math style="vertical-align: -5px">\{0\}.</math> |
|- | |- | ||
| | | | ||
Line 63: | Line 86: | ||
|- | |- | ||
| <math>\begin{array}{rcl} | | <math>\begin{array}{rcl} | ||
− | \displaystyle{\lim_{n\rightarrow \infty}|\frac{a_{n+1}}{a_n}|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{(x+1)^{n+1}}{\sqrt{n+1}}\frac{\sqrt{n}}{(x+1)^n}\bigg|}\\ | + | \displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{(x+1)^{n+1}}{\sqrt{n+1}}\frac{\sqrt{n}}{(x+1)^n}\bigg|}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| (x+1)\frac{\sqrt{n}}{\sqrt{n+1}}\bigg|}\\ | & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| (x+1)\frac{\sqrt{n}}{\sqrt{n+1}}\bigg|}\\ | ||
Line 82: | Line 105: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |The Ratio Test tells us this series is absolutely convergent if <math>|x+1|<1.</math> | + | |The Ratio Test tells us this series is absolutely convergent if <math style="vertical-align: -4px">|x+1|<1.</math> |
|- | |- | ||
− | |Hence, the Radius of Convergence of this series is <math>R=1.</math> | + | |Hence, the Radius of Convergence of this series is <math style="vertical-align: -1px">R=1.</math> |
|} | |} | ||
Line 92: | Line 115: | ||
|Now, we need to determine the interval of convergence. | |Now, we need to determine the interval of convergence. | ||
|- | |- | ||
− | |First, note that <math>|x+1|<1</math> corresponds to the interval <math>(-2,0).</math> | + | |First, note that <math style="vertical-align: -4px">|x+1|<1</math> corresponds to the interval <math style="vertical-align: -4px">(-2,0).</math> |
|- | |- | ||
|To obtain the interval of convergence, we need to test the endpoints of this interval | |To obtain the interval of convergence, we need to test the endpoints of this interval | ||
|- | |- | ||
− | |for convergence since the Ratio Test is inconclusive when <math>R=1.</math> | + | |for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -1px">R=1.</math> |
|} | |} | ||
Line 102: | Line 125: | ||
!Step 4: | !Step 4: | ||
|- | |- | ||
− | |First, let <math>x=0.</math> | + | |First, let <math style="vertical-align: -1px">x=0.</math> |
|- | |- | ||
|Then, the series becomes <math>\sum_{n=0}^\infty \frac{1}{\sqrt{n}}.</math> | |Then, the series becomes <math>\sum_{n=0}^\infty \frac{1}{\sqrt{n}}.</math> | ||
|- | |- | ||
− | |We note that this is a <math>p</math>-series with <math>p=\frac{1}{2}.</math> | + | |We note that this is a <math style="vertical-align: -3px">p</math>-series with <math style="vertical-align: -12px">p=\frac{1}{2}.</math> |
|- | |- | ||
|Since <math>p<1,</math> the series diverges. | |Since <math>p<1,</math> the series diverges. | ||
|- | |- | ||
− | |Hence, we do not include <math>x=0</math> in the interval. | + | |Hence, we do not include <math style="vertical-align: -1px">x=0</math> in the interval. |
|} | |} | ||
Line 116: | Line 139: | ||
!Step 5: | !Step 5: | ||
|- | |- | ||
− | |Now, let <math>x=-2.</math> | + | |Now, let <math style="vertical-align: -1px">x=-2.</math> |
|- | |- | ||
|Then, the series becomes <math>\sum_{n=0}^\infty (-1)^n \frac{1}{\sqrt{n}}.</math> | |Then, the series becomes <math>\sum_{n=0}^\infty (-1)^n \frac{1}{\sqrt{n}}.</math> | ||
Line 122: | Line 145: | ||
|This series is alternating. | |This series is alternating. | ||
|- | |- | ||
− | |Let <math>b_n=\frac{1}{\sqrt{n}}.</math> | + | |Let <math style="vertical-align: -20px">b_n=\frac{1}{\sqrt{n}}.</math> |
|- | |- | ||
|The sequence <math>\{b_n\}</math> is decreasing since | |The sequence <math>\{b_n\}</math> is decreasing since | ||
Line 128: | Line 151: | ||
| <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math> | | <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math> | ||
|- | |- | ||
− | |for all <math>n\ge 1.</math> | + | |for all <math style="vertical-align: -3px">n\ge 1.</math> |
|- | |- | ||
|Also, | |Also, | ||
Line 136: | Line 159: | ||
|Therefore, the series converges by the Alternating Series Test. | |Therefore, the series converges by the Alternating Series Test. | ||
|- | |- | ||
− | |Hence, we include <math>x=-2</math> in our interval of convergence. | + | |Hence, we include <math style="vertical-align: -1px">x=-2</math> in our interval of convergence. |
|} | |} | ||
Line 142: | Line 165: | ||
!Step 6: | !Step 6: | ||
|- | |- | ||
− | |The interval of convergence is <math>[-2,0).</math> | + | |The interval of convergence is <math style="vertical-align: -4px">[-2,0).</math> |
|} | |} | ||
Line 149: | Line 172: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' The radius of convergence is <math>R=0</math> and the interval of convergence is <math>\{0\}.</math> | + | | '''(a)''' The radius of convergence is <math style="vertical-align: -1px">R=0</math> and the interval of convergence is <math>\{0\}.</math> |
|- | |- | ||
− | | '''(b)''' The radius of convergence is <math>R=1</math> and the interval fo convergence is <math>[-2,0).</math> | + | | '''(b)''' The radius of convergence is <math style="vertical-align: -1px">R=1</math> and the interval fo convergence is <math style="vertical-align: -4px">[-2,0).</math> |
|} | |} | ||
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 17:39, 15 February 2017
Find the radius of convergence and interval of convergence of the series.
- a)
- b)
Foundations: |
---|
1. Root Test |
Let be a positive sequence and let |
Then, |
If the series converges. |
If the series is divergent. |
If the test is inconclusive. |
2. Ratio Test |
Let be a series and |
Then, |
If the series is absolutely convergent. |
If the series is divergent. |
If the test is inconclusive. |
Solution:
(a)
Step 1: |
---|
We begin by applying the Root Test. |
We have |
|
Step 2: |
---|
This means that as long as this series diverges. |
Hence, the radius of convergence is and |
the interval of convergence is |
(b)
Step 1: |
---|
We first use the Ratio Test to determine the radius of convergence. |
We have |
Step 2: |
---|
The Ratio Test tells us this series is absolutely convergent if |
Hence, the Radius of Convergence of this series is |
Step 3: |
---|
Now, we need to determine the interval of convergence. |
First, note that corresponds to the interval |
To obtain the interval of convergence, we need to test the endpoints of this interval |
for convergence since the Ratio Test is inconclusive when |
Step 4: |
---|
First, let |
Then, the series becomes |
We note that this is a -series with |
Since the series diverges. |
Hence, we do not include in the interval. |
Step 5: |
---|
Now, let |
Then, the series becomes |
This series is alternating. |
Let |
The sequence is decreasing since |
for all |
Also, |
Therefore, the series converges by the Alternating Series Test. |
Hence, we include in our interval of convergence. |
Step 6: |
---|
The interval of convergence is |
Final Answer: |
---|
(a) The radius of convergence is and the interval of convergence is |
(b) The radius of convergence is and the interval fo convergence is |