Difference between revisions of "009C Sample Midterm 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|Alternating Series Test
+
|'''1.''' '''Alternating Series Test'''
 
|-
 
|-
|Ratio Test
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math>\{a_n\}</math> be a positive, decreasing sequence where <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} a_n=0.</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math>\sum_{n=1}^\infty (-1)^na_n</math> and <math>\sum_{n=1}^\infty (-1)^{n+1}a_n</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; converge.
 +
|-
 +
|'''2.''' '''Ratio Test'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent.
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L>1,</math> the series is divergent.
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive.
 +
|-
 +
|'''3.''' If a series absolutely converges, then it also converges.
 
|-
 
|-
 
|
 
|
Line 37: Line 58:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math>
 
|-
 
|-
|for all <math>n\ge 1.</math>
+
|for all <math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|-
 
|Also,  
 
|Also,  
Line 69: Line 90:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we need to calculate <math>\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math>
+
|Now, we need to calculate <math style="vertical-align: -15px">\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math>
 
|-
 
|-
|Let <math>y=\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math>
+
|Let <math style="vertical-align: -15px">y=\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math>
 
|-
 
|-
 
|Then, taking the natural log of both sides, we get
 
|Then, taking the natural log of both sides, we get
Line 88: Line 109:
 
|since we can interchange limits and continuous functions.
 
|since we can interchange limits and continuous functions.
 
|-
 
|-
|Now, this limit has the form <math>\frac{0}{0}.</math>
+
|Now, this limit has the form <math style="vertical-align: -13px">\frac{0}{0}.</math>
 
|-
 
|-
 
|Hence, we can use L'Hopital's Rule to calculate this limit.
 
|Hence, we can use L'Hopital's Rule to calculate this limit.
Line 115: Line 136:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
|Since <math>\ln y=-1,</math> <math>y=e^{-1}.</math>
+
|Since <math>\ln y=-1,</math> we know
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=e^{-1}.</math>
 
|-
 
|-
 
|Now, we have
 
|Now, we have
Line 121: Line 144:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} \bigg|\frac{a_{n+1}}{a_n}\bigg|=2e^{-1}=\frac{2}{e}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} \bigg|\frac{a_{n+1}}{a_n}\bigg|=2e^{-1}=\frac{2}{e}.</math>
 
|-
 
|-
|Since <math>\frac{2}{e}<1,</math> the series is absolutely convergent by the Ratio Test.
+
|Since <math style="vertical-align: -13px">\frac{2}{e}<1,</math> the series is absolutely convergent by the Ratio Test.
 
|-
 
|-
 
|Therefore, the series converges.
 
|Therefore, the series converges.

Revision as of 17:15, 15 February 2017

Determine convergence or divergence:

a)
b)


Foundations:  
1. Alternating Series Test
        Let be a positive, decreasing sequence where
        Then, and
        converge.
2. Ratio Test
        Let be a series and
        Then,

        If the series is absolutely convergent.

        If the series is divergent.

        If the test is inconclusive.

3. If a series absolutely converges, then it also converges.

Solution:

(a)

Step 1:  
First, we have
       
Step 2:  
We notice that the series is alternating.
Let
The sequence is decreasing since
       
for all
Also,
       
Therefore, the series converges by the Alternating Series Test.

(b)

Step 1:  
We begin by using the Ratio Test.
We have

       

Step 2:  
Now, we need to calculate
Let
Then, taking the natural log of both sides, we get

       

since we can interchange limits and continuous functions.
Now, this limit has the form
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since we know
       
Now, we have
       
Since the series is absolutely convergent by the Ratio Test.
Therefore, the series converges.
Final Answer:  
    (a)     converges
    (b)     converges

Return to Sample Exam