Difference between revisions of "009C Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Consider the infinite series <math>\sum_{n=2}^\infty 2\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math>
 
<span class="exam">Consider the infinite series <math>\sum_{n=2}^\infty 2\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math>
  
::<span class="exam">a) Find an expression for the <math>n</math>th partial sum <math>s_n</math> of the series.
+
::<span class="exam">a) Find an expression for the <math style="vertical-align: 0px">n</math>th partial sum <math style="vertical-align: -3px">s_n</math> of the series.
::<span class="exam">b) Compute <math>\lim_{n\rightarrow \infty} s_n.</math>
+
::<span class="exam">b) Compute <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} s_n.</math>
  
  
Line 8: Line 8:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|The <math style="vertical-align: 0px">n</math>th partial sum, <math style="vertical-align: -3px">s_n</math> for a series <math>\sum_{n=1}^\infty a_n </math>  
+
|The <math style="vertical-align: 0px">n</math>th partial sum, <math style="vertical-align: -3px">s_n</math> for a series <math>\sum_{n=1}^\infty a_n </math> is defined as
|-
 
|is defined as
 
 
|-
 
|-
 
|
 
|
Line 25: Line 23:
 
|We need to find a pattern for the partial sums in order to find a formula.  
 
|We need to find a pattern for the partial sums in order to find a formula.  
 
|-
 
|-
|We start by calculating <math>s_2</math>. We have
+
|We start by calculating <math style="vertical-align: -3px">s_2</math>. We have
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_2=2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg).</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_2=2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg).</math>
Line 33: Line 31:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Next, we calculate <math>s_3</math> and <math>s_4.</math> We have
+
|Next, we calculate <math style="vertical-align: -3px">s_3</math> and <math style="vertical-align: -3px">s_4.</math> We have
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
Line 53: Line 51:
 
!Step 3: &nbsp;  
 
!Step 3: &nbsp;  
 
|-
 
|-
|If we look at <math>s_2,s_3,s_4, </math> we notice a pattern.
+
|If we look at <math style="vertical-align: -4px">s_2,s_3,</math> and <math style="vertical-align: -4px">s_4, </math> we notice a pattern.
 
|-
 
|-
 
|From this pattern, we get the formula
 
|From this pattern, we get the formula
Line 72: Line 70:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|We now calculate <math>\lim_{n\rightarrow \infty} s_n.</math>  
+
|We now calculate <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} s_n.</math>  
 
|-
 
|-
 
|We get  
 
|We get  

Revision as of 09:36, 14 February 2017

Consider the infinite series

a) Find an expression for the th partial sum of the series.
b) Compute


Foundations:  
The th partial sum, for a series is defined as

       


Solution:

(a)

Step 1:  
We need to find a pattern for the partial sums in order to find a formula.
We start by calculating . We have
       
Step 2:  
Next, we calculate and We have
       
and
       
Step 3:  
If we look at and we notice a pattern.
From this pattern, we get the formula
       

(b)

Step 1:  
From Part (a), we have
       
Step 2:  
We now calculate
We get
       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam