Difference between revisions of "009C Sample Midterm 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 49: Line 49:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|We begin by using the Ratio Test.
 +
|-
 +
|We have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(-2)^{n+1} (n+1)!}{(n+1)^{n+1}} \frac{n^n}{(-2)^n n!}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| (-2)(n+1) \frac{n^n}{(n+1)^{n+1}}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} 2\frac{n^n}{(n+1)^n}}\\
 +
&&\\
 +
& = & \displaystyle{2\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.}
 +
\end{array}</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|Now, we need to calculate <math>\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math>
 +
|-
 +
|Let <math>y=\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math>
 +
|-
 +
|Then, taking the natural log of both sides, we get
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\ln y } & = & \displaystyle{\ln \bigg( \lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n \bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \ln \bigg(\frac{n}{n+1}\bigg)^n}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} n \ln \bigg(\frac{n}{n+1}\bigg) }\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}}
 +
\end{array}</math>
 
|-
 
|-
|
+
|since we can interchange limits and continuous functions.
 +
|-
 +
|Now, this limit has the form <math>\frac{0}{0}.</math>
 +
|-
 +
|Hence, we can use L'Hopital's Rule to calculate this limit.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Now, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(\frac{x}{x+1}\bigg)}{\frac{1}{x}}}\\
 +
&&\\
 +
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{\bigg(\frac{x}{x+1}\bigg)}\frac{1}{(x+1)^2}}{\big(-\frac{1}{x^2}\big)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-x}{x+1}}\\
 +
&&\\
 +
& = & \displaystyle{-1.}
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 2: &nbsp;
+
!Step 4: &nbsp;
 +
|-
 +
|Since <math>\ln y=-1,</math> <math>y=e^{-1}.</math>
 
|-
 
|-
|  
+
|Now, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} \bigg|\frac{a_{n+1}}{a_n}\bigg|=2e^{-1}=\frac{2}{e}.</math>
 
|-
 
|-
|
+
|Since <math>\frac{2}{e}<1,</math> the series is absolutely convergent by the Ratio Test.
 
|-
 
|-
|
+
|Therefore, the series converges.
 
|}
 
|}
  

Revision as of 12:29, 13 February 2017

Determine convergence or divergence:

a)
b)


Foundations:  
Alternating Series Test
Ratio Test

Solution:

(a)

Step 1:  
First, we have
       
Step 2:  
We notice that the series is alternating.
Let
The sequence is decreasing since
       
for all
Also,
       
Therefore, the series converges by the Alternating Series Test.

(b)

Step 1:  
We begin by using the Ratio Test.
We have

       

Step 2:  
Now, we need to calculate
Let
Then, taking the natural log of both sides, we get

       

since we can interchange limits and continuous functions.
Now, this limit has the form
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since
Now, we have
       
Since the series is absolutely convergent by the Ratio Test.
Therefore, the series converges.
Final Answer:  
    (a)     converges
    (b)     converges

Return to Sample Exam