Difference between revisions of "009C Sample Midterm 2, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 49: | Line 49: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |We begin by using the Ratio Test. | ||
+ | |- | ||
+ | |We have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(-2)^{n+1} (n+1)!}{(n+1)^{n+1}} \frac{n^n}{(-2)^n n!}\bigg|}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| (-2)(n+1) \frac{n^n}{(n+1)^{n+1}}\bigg|}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n\rightarrow \infty} 2\frac{n^n}{(n+1)^n}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.} | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
+ | |- | ||
+ | |Now, we need to calculate <math>\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math> | ||
+ | |- | ||
+ | |Let <math>y=\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math> | ||
+ | |- | ||
+ | |Then, taking the natural log of both sides, we get | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\ln y } & = & \displaystyle{\ln \bigg( \lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n \bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n\rightarrow \infty} \ln \bigg(\frac{n}{n+1}\bigg)^n}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n\rightarrow \infty} n \ln \bigg(\frac{n}{n+1}\bigg) }\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}} | ||
+ | \end{array}</math> | ||
|- | |- | ||
− | | | + | |since we can interchange limits and continuous functions. |
+ | |- | ||
+ | |Now, this limit has the form <math>\frac{0}{0}.</math> | ||
+ | |- | ||
+ | |Hence, we can use L'Hopital's Rule to calculate this limit. | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 3: | ||
+ | |- | ||
+ | |Now, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(\frac{x}{x+1}\bigg)}{\frac{1}{x}}}\\ | ||
+ | &&\\ | ||
+ | & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{\bigg(\frac{x}{x+1}\bigg)}\frac{1}{(x+1)^2}}{\big(-\frac{1}{x^2}\big)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-x}{x+1}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-1.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | !Step | + | !Step 4: |
+ | |- | ||
+ | |Since <math>\ln y=-1,</math> <math>y=e^{-1}.</math> | ||
|- | |- | ||
− | | | + | |Now, we have |
|- | |- | ||
− | | | + | | <math>\lim_{n\rightarrow \infty} \bigg|\frac{a_{n+1}}{a_n}\bigg|=2e^{-1}=\frac{2}{e}.</math> |
|- | |- | ||
− | | | + | |Since <math>\frac{2}{e}<1,</math> the series is absolutely convergent by the Ratio Test. |
|- | |- | ||
− | | | + | |Therefore, the series converges. |
|} | |} | ||
Revision as of 12:29, 13 February 2017
Determine convergence or divergence:
- a)
- b)
Foundations: |
---|
Alternating Series Test |
Ratio Test |
Solution:
(a)
Step 1: |
---|
First, we have |
Step 2: |
---|
We notice that the series is alternating. |
Let |
The sequence is decreasing since |
for all |
Also, |
Therefore, the series converges by the Alternating Series Test. |
(b)
Step 1: |
---|
We begin by using the Ratio Test. |
We have |
|
Step 2: |
---|
Now, we need to calculate |
Let |
Then, taking the natural log of both sides, we get |
|
since we can interchange limits and continuous functions. |
Now, this limit has the form |
Hence, we can use L'Hopital's Rule to calculate this limit. |
Step 3: |
---|
Now, we have |
|
Step 4: |
---|
Since |
Now, we have |
Since the series is absolutely convergent by the Ratio Test. |
Therefore, the series converges. |
Final Answer: |
---|
(a) converges |
(b) converges |