Difference between revisions of "009C Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 28: Line 28:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we notice that
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} \ln n =\infty</math>
 +
|-
 +
|and
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} n=\infty.</math>
 +
|-
 +
|Therefore, the limit has the form <math>\frac{\infty}{\infty},</math>
 +
|-
 +
|which means we can use L'Hopital's Rule to calculate this limit.
 
|}
 
|}
  
Line 36: Line 44:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|First, we switch to the variable <math>x</math> so we have functions and
 
|-
 
|-
|
+
|can take derivatives. Thus, using L'Hopital's Rule, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty} \frac{\ln n}{n}} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln x}{x}}\\
 +
&&\\
 +
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\big(\frac{1}{x}\big)}{1}}\\
 +
&&\\
 +
& = & \displaystyle{0.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 45: Line 61:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>0</math>
|-
 
|
 
 
|}
 
|}
 
[[009C_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:15, 12 February 2017

Does the following sequence converge or diverge?

If the sequence converges, also find the limit of the sequence.

Be sure to jusify your answers!


Foundations:  
L'Hôpital's Rule

        Suppose that   and   are both zero or both

        If   is finite or 

        then

Solution:

Step 1:  
First, we notice that
       
and
       
Therefore, the limit has the form
which means we can use L'Hopital's Rule to calculate this limit.
Step 2:  
First, we switch to the variable so we have functions and
can take derivatives. Thus, using L'Hopital's Rule, we have
       


Final Answer:  
       

Return to Sample Exam