Difference between revisions of "009C Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|  
+
|'''L'Hôpital's Rule'''
 
|-
 
|-
 
|
 
|
::
+
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&thinsp; and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&thinsp; are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|-
 
|
 
|
::
+
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>&thinsp; is finite or&thinsp; <math style="vertical-align: -4px">\pm \infty ,</math>
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
|}
  

Revision as of 12:55, 12 February 2017

Does the following sequence converge or diverge?

If the sequence converges, also find the limit of the sequence.

Be sure to jusify your answers!


Foundations:  
L'Hôpital's Rule

        Suppose that   and   are both zero or both

        If   is finite or 

        then

Solution:

Step 1:  
Step 2:  


Final Answer:  

Return to Sample Exam