Difference between revisions of "009B Sample Midterm 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 14: | Line 14: | ||
|- | |- | ||
| | | | ||
| − | Part 1 of the Fundamental Theorem of Calculus says that | + | Part 1 of the Fundamental Theorem of Calculus says that |
|- | |- | ||
| − | | <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt=\sin(x).</math> | + | | <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt=\sin(x).</math> |
|- | |- | ||
|'''2.''' What does Part 2 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\int_a^b\sec^2x~dx</math> where <math style="vertical-align: -5px">a,b</math> are constants? | |'''2.''' What does Part 2 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\int_a^b\sec^2x~dx</math> where <math style="vertical-align: -5px">a,b</math> are constants? | ||
|- | |- | ||
| | | | ||
| − | Part 2 of the Fundamental Theorem of Calculus says that | + | Part 2 of the Fundamental Theorem of Calculus says that |
|- | |- | ||
| − | | <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math> where <math style="vertical-align: 0px">F</math> is any antiderivative of <math style="vertical-align: 0px">\sec^2x.</math> | + | | <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math> where <math style="vertical-align: 0px">F</math> is any antiderivative of <math style="vertical-align: 0px">\sec^2x.</math> |
|} | |} | ||
| Line 52: | Line 52: | ||
|Then, | |Then, | ||
|- | |- | ||
| − | | <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> | + | | <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> |
|} | |} | ||
| Line 68: | Line 68: | ||
|Then, | |Then, | ||
|- | |- | ||
| − | | <math style="vertical-align: -5px">F(x)=G(g(x)).</math> | + | | <math style="vertical-align: -5px">F(x)=G(g(x)).</math> |
|} | |} | ||
| Line 88: | Line 88: | ||
|Since | |Since | ||
|- | |- | ||
| − | | <math style="vertical-align: -4px">G'(g(x))=\sin(g(x))=\sin(\cos(x)),</math> | + | | <math style="vertical-align: -4px">G'(g(x))=\sin(g(x))=\sin(\cos(x)),</math> |
|- | |- | ||
|we have | |we have | ||
|- | |- | ||
| − | | <math style="vertical-align: -5px">F'(x)=G'(g(x))\cdot g'(x)=\sin(\cos(x))\cdot(-\sin(x)).</math> | + | | <math style="vertical-align: -5px">F'(x)=G'(g(x))\cdot g'(x)=\sin(\cos(x))\cdot(-\sin(x)).</math> |
|} | |} | ||
| Line 102: | Line 102: | ||
| Using the '''Fundamental Theorem of Calculus, Part 2''', we have | | Using the '''Fundamental Theorem of Calculus, Part 2''', we have | ||
|- | |- | ||
| − | | <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan(x)\biggr|_{0}^{\pi/4}.</math> | + | | <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan(x)\biggr|_{0}^{\pi/4}.</math> |
|} | |} | ||
| Line 110: | Line 110: | ||
|So, we get | |So, we get | ||
|- | |- | ||
| − | | <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1.</math> | + | | <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1.</math> |
|} | |} | ||
| Line 117: | Line 117: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' | + | | '''(a)''' |
|- | |- | ||
| − | |'''The Fundamental Theorem of Calculus, Part 1''' | + | | '''The Fundamental Theorem of Calculus, Part 1''' |
|- | |- | ||
| − | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> | + | | Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> |
|- | |- | ||
| − | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> | + | | Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> |
|- | |- | ||
| − | |'''The Fundamental Theorem of Calculus, Part 2''' | + | | '''The Fundamental Theorem of Calculus, Part 2''' |
|- | |- | ||
| − | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math> | + | | Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math> |
|- | |- | ||
| − | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> | + | | Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> |
|- | |- | ||
| − | |'''(b)''' <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x)).</math> | + | | '''(b)''' <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x)).</math> |
|- | |- | ||
| − | |'''(c)''' <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1.</math> | + | | '''(c)''' <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1.</math> |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 18:02, 7 February 2017
This problem has three parts:
- a) State the Fundamental Theorem of Calculus.
- b) Compute
- c) Evaluate
| Foundations: |
|---|
| 1. What does Part 1 of the Fundamental Theorem of Calculus say about |
|
Part 1 of the Fundamental Theorem of Calculus says that |
| 2. What does Part 2 of the Fundamental Theorem of Calculus say about where are constants? |
|
Part 2 of the Fundamental Theorem of Calculus says that |
| where is any antiderivative of |
Solution:
(a)
| Step 1: |
|---|
| The Fundamental Theorem of Calculus has two parts. |
| The Fundamental Theorem of Calculus, Part 1 |
| Let be continuous on and let |
| Then, is a differentiable function on and |
| Step 2: |
|---|
| The Fundamental Theorem of Calculus, Part 2 |
| Let be continuous on and let be any antiderivative of |
| Then, |
(b)
| Step 1: |
|---|
| Let |
| The problem is asking us to find |
| Let and |
| Then, |
| Step 2: |
|---|
| If we take the derivative of both sides of the last equation, |
| we get by the Chain Rule. |
| Step 3: |
|---|
| Now, and |
| by the Fundamental Theorem of Calculus, Part 1. |
| Since |
| we have |
(c)
| Step 1: |
|---|
| Using the Fundamental Theorem of Calculus, Part 2, we have |
| Step 2: |
|---|
| So, we get |
| Final Answer: |
|---|
| (a) |
| The Fundamental Theorem of Calculus, Part 1 |
| Let be continuous on and let |
| Then, is a differentiable function on and |
| The Fundamental Theorem of Calculus, Part 2 |
| Let be continuous on and let be any antiderivative of |
| Then, |
| (b) |
| (c) |