Difference between revisions of "009B Sample Midterm 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution.  
+
&nbsp; &nbsp; &nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|&nbsp; &nbsp; Let <math style="vertical-align: -2px">u=x^2+x.</math> Then, <math style="vertical-align: -4px">du=(2x+1)~dx.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -2px">u=x^2+x.</math>  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -4px">du=(2x+1)~dx.</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; Thus,  
+
&nbsp; &nbsp; &nbsp; &nbsp; Thus,  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int (2x+1)\sqrt{x^2+x}~dx} & = & \displaystyle{\int \sqrt{u}~du}\\
 
\displaystyle{\int (2x+1)\sqrt{x^2+x}~dx} & = & \displaystyle{\int \sqrt{u}~du}\\
 
&&\\
 
&&\\
Line 39: Line 41:
 
|-
 
|-
 
|  
 
|  
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt} & = & \displaystyle{\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt}\\
 
\displaystyle{\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt} & = & \displaystyle{\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt}\\
 
&&\\
 
&&\\
Line 51: Line 53:
 
|We integrate to get
 
|We integrate to get
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2.</math>
+
| &nbsp;&nbsp; &nbsp; &nbsp; <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2.</math>
 
|-
 
|-
 
|We now evaluate to get
 
|We now evaluate to get
 
|-
 
|-
 
|  
 
|  
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt} & = & \displaystyle{2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)}\\
 
\displaystyle{\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt} & = & \displaystyle{2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)}\\
 
&&\\
 
&&\\
Line 71: Line 73:
 
|We use <math style="vertical-align: 0px">u</math>-substitution.  
 
|We use <math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|Let <math style="vertical-align: -2px">u=x^4+2x^2+4.</math> Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx.</math>  
+
|Let <math style="vertical-align: -2px">u=x^4+2x^2+4.</math>  
 +
|-
 +
|Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx.</math>  
 
|-
 
|-
 
|Also, we need to change the bounds of integration.  
 
|Also, we need to change the bounds of integration.  
Line 81: Line 85:
 
|Therefore, the integral becomes
 
|Therefore, the integral becomes
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -14px">\frac{1}{4}\int_4^{28}\sqrt{u}~du.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\frac{1}{4}\int_4^{28}\sqrt{u}~du.</math>
 
|}
 
|}
  
Line 90: Line 94:
 
|-
 
|-
 
|  
 
|  
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx} & = & \displaystyle{\frac{1}{4}\int_4^{28}\sqrt{u}~du}\\
 
\displaystyle{\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx} & = & \displaystyle{\frac{1}{4}\int_4^{28}\sqrt{u}~du}\\
 
&&\\
 
&&\\
Line 104: Line 108:
 
|Therefore,  
 
|Therefore,  
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}.</math>
+
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}.</math>
 
|}
 
|}
  
Line 111: Line 115:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' &nbsp; <math>\frac{211}{8}</math>
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{211}{8}</math>
 
|-
 
|-
|'''(b)''' &nbsp; <math>\frac{28\sqrt{7}-4}{3}</math>
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{28\sqrt{7}-4}{3}</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:58, 7 February 2017

Evaluate

a)  
b)  


Foundations:  
How would you integrate

        You could use -substitution.

        Let
        Then,

        Thus,

       


Solution:

(a)

Step 1:  
We multiply the product inside the integral to get

       

Step 2:  
We integrate to get
      
We now evaluate to get

       

(b)

Step 1:  
We use -substitution.
Let
Then, and
Also, we need to change the bounds of integration.
Plugging in our values into the equation
we get and
Therefore, the integral becomes
       
Step 2:  
We now have

       

Therefore,
       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam