Difference between revisions of "009B Sample Midterm 2, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 12: | Line 12: | ||
|- | |- | ||
| | | | ||
| − | You could use <math style="vertical-align: 0px">u</math>-substitution. | + | You could use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
| − | | Let <math style="vertical-align: -2px">u=x^2+x.</math> Then, <math style="vertical-align: -4px">du=(2x+1)~dx.</math> | + | | Let <math style="vertical-align: -2px">u=x^2+x.</math> |
| + | |- | ||
| + | | Then, <math style="vertical-align: -4px">du=(2x+1)~dx.</math> | ||
|- | |- | ||
| | | | ||
| − | Thus, | + | Thus, |
|- | |- | ||
| | | | ||
| − | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int (2x+1)\sqrt{x^2+x}~dx} & = & \displaystyle{\int \sqrt{u}~du}\\ | \displaystyle{\int (2x+1)\sqrt{x^2+x}~dx} & = & \displaystyle{\int \sqrt{u}~du}\\ | ||
&&\\ | &&\\ | ||
| Line 39: | Line 41: | ||
|- | |- | ||
| | | | ||
| − | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt} & = & \displaystyle{\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt}\\ | \displaystyle{\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt} & = & \displaystyle{\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt}\\ | ||
&&\\ | &&\\ | ||
| Line 51: | Line 53: | ||
|We integrate to get | |We integrate to get | ||
|- | |- | ||
| − | | <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2.</math> | + | | <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2.</math> |
|- | |- | ||
|We now evaluate to get | |We now evaluate to get | ||
|- | |- | ||
| | | | ||
| − | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt} & = & \displaystyle{2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)}\\ | \displaystyle{\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt} & = & \displaystyle{2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)}\\ | ||
&&\\ | &&\\ | ||
| Line 71: | Line 73: | ||
|We use <math style="vertical-align: 0px">u</math>-substitution. | |We use <math style="vertical-align: 0px">u</math>-substitution. | ||
|- | |- | ||
| − | |Let <math style="vertical-align: -2px">u=x^4+2x^2+4.</math> Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx.</math> | + | |Let <math style="vertical-align: -2px">u=x^4+2x^2+4.</math> |
| + | |- | ||
| + | |Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx.</math> | ||
|- | |- | ||
|Also, we need to change the bounds of integration. | |Also, we need to change the bounds of integration. | ||
| Line 81: | Line 85: | ||
|Therefore, the integral becomes | |Therefore, the integral becomes | ||
|- | |- | ||
| − | | <math style="vertical-align: -14px">\frac{1}{4}\int_4^{28}\sqrt{u}~du.</math> | + | | <math style="vertical-align: -14px">\frac{1}{4}\int_4^{28}\sqrt{u}~du.</math> |
|} | |} | ||
| Line 90: | Line 94: | ||
|- | |- | ||
| | | | ||
| − | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx} & = & \displaystyle{\frac{1}{4}\int_4^{28}\sqrt{u}~du}\\ | \displaystyle{\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx} & = & \displaystyle{\frac{1}{4}\int_4^{28}\sqrt{u}~du}\\ | ||
&&\\ | &&\\ | ||
| Line 104: | Line 108: | ||
|Therefore, | |Therefore, | ||
|- | |- | ||
| − | | <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}.</math> | + | | <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}.</math> |
|} | |} | ||
| Line 111: | Line 115: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' <math>\frac{211}{8}</math> | + | | '''(a)''' <math>\frac{211}{8}</math> |
|- | |- | ||
| − | |'''(b)''' <math>\frac{28\sqrt{7}-4}{3}</math> | + | | '''(b)''' <math>\frac{28\sqrt{7}-4}{3}</math> |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 17:58, 7 February 2017
Evaluate
- a)
- b)
| Foundations: |
|---|
| How would you integrate |
|
You could use -substitution. |
| Let |
| Then, |
|
Thus, |
|
|
Solution:
(a)
| Step 1: |
|---|
| We multiply the product inside the integral to get |
|
|
| Step 2: |
|---|
| We integrate to get |
| We now evaluate to get |
|
|
(b)
| Step 1: |
|---|
| We use -substitution. |
| Let |
| Then, and |
| Also, we need to change the bounds of integration. |
| Plugging in our values into the equation |
| we get and |
| Therefore, the integral becomes |
| Step 2: |
|---|
| We now have |
|
|
| Therefore, |
| Final Answer: |
|---|
| (a) |
| (b) |