Difference between revisions of "009B Sample Midterm 2, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 9: | Line 9: | ||
|'''1.''' Integration by parts tells us | |'''1.''' Integration by parts tells us | ||
|- | |- | ||
| − | | <math style="vertical-align: -15px">\int u~dv=uv-\int v~du.</math> | + | | <math style="vertical-align: -15px">\int u~dv=uv-\int v~du.</math> |
|- | |- | ||
|'''2.''' How would you integrate <math style="vertical-align: -15px">\int e^x\sin x~dx?</math> | |'''2.''' How would you integrate <math style="vertical-align: -15px">\int e^x\sin x~dx?</math> | ||
|- | |- | ||
| | | | ||
| − | You could use integration by parts. | + | You could use integration by parts. |
|- | |- | ||
| | | | ||
| − | Let <math style="vertical-align: -5px">u=\sin(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> | + | Let <math style="vertical-align: -5px">u=\sin(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> |
|- | |- | ||
| − | | Then, <math style="vertical-align: -5px">du=\cos(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> | + | | Then, <math style="vertical-align: -5px">du=\cos(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> |
|- | |- | ||
| | | | ||
| − | Thus, <math style="vertical-align: -15px">\int e^x\sin x~dx=e^x\sin(x)-\int e^x\cos(x)~dx.</math> | + | Thus, <math style="vertical-align: -15px">\int e^x\sin x~dx=e^x\sin(x)-\int e^x\cos(x)~dx.</math> |
|- | |- | ||
| | | | ||
| − | Now, we need to use integration by parts a second time. | + | Now, we need to use integration by parts a second time. |
|- | |- | ||
| | | | ||
| − | Let <math style="vertical-align: -5px">u=\cos(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> Then, <math style="vertical-align: -5px">du=-\sin(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> | + | Let <math style="vertical-align: -5px">u=\cos(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> |
| + | |- | ||
| + | | Then, <math style="vertical-align: -5px">du=-\sin(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> | ||
| + | |- | ||
| + | | Therefore, | ||
|- | |- | ||
| | | | ||
| − | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int e^x\sin x~dx} & = & \displaystyle{e^x\sin(x)-(e^x\cos(x)-\int -e^x\sin(x)~dx}\\ | \displaystyle{\int e^x\sin x~dx} & = & \displaystyle{e^x\sin(x)-(e^x\cos(x)-\int -e^x\sin(x)~dx}\\ | ||
&&\\ | &&\\ | ||
| Line 38: | Line 42: | ||
|- | |- | ||
| | | | ||
| − | Notice, we are back where we started. | + | Notice, we are back where we started. |
| + | |- | ||
| + | | Therefore, adding the last term on the right hand side to the opposite side, we get | ||
|- | |- | ||
| | | | ||
| − | | + | <math style="vertical-align: -13px">2\int e^x\sin (x)~dx=e^x(\sin(x)-\cos(x)).</math> |
|- | |- | ||
| | | | ||
| − | Hence, <math style="vertical-align: -15px">\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C.</math> | + | Hence, <math style="vertical-align: -15px">\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C.</math> |
|} | |} | ||
| Line 58: | Line 64: | ||
|Then, <math style="vertical-align: -5px">du=2\cos(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math> | |Then, <math style="vertical-align: -5px">du=2\cos(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math> | ||
|- | |- | ||
| − | | | + | |Thus, we get |
|- | |- | ||
| | | | ||
| Line 80: | Line 86: | ||
|- | |- | ||
| | | | ||
| − | <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx.</math> | + | <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx.</math> |
| − | |||
| − | |||
|} | |} | ||
| Line 94: | Line 98: | ||
|Thus, if we add the integral on the right to the other side of the equation, we get | |Thus, if we add the integral on the right to the other side of the equation, we get | ||
|- | |- | ||
| − | | <math>2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}.</math> | + | | <math>2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}.</math> |
|- | |- | ||
|Now, we divide both sides by 2 to get | |Now, we divide both sides by 2 to get | ||
|- | |- | ||
| − | | <math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}.</math> | + | | <math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}.</math> |
|- | |- | ||
|Thus, the final answer is | |Thus, the final answer is | ||
|- | |- | ||
| − | | <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C.</math> | + | | <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C.</math> |
|} | |} | ||
Revision as of 18:54, 7 February 2017
Evaluate the integral:
| Foundations: |
|---|
| 1. Integration by parts tells us |
| 2. How would you integrate |
|
You could use integration by parts. |
|
Let and |
| Then, and |
|
Thus, |
|
Now, we need to use integration by parts a second time. |
|
Let and |
| Then, and |
| Therefore, |
|
|
|
Notice, we are back where we started. |
| Therefore, adding the last term on the right hand side to the opposite side, we get |
|
|
|
Hence, |
Solution:
| Step 1: |
|---|
| We proceed using integration by parts. |
| Let and |
| Then, and |
| Thus, we get |
|
|
| Step 2: |
|---|
| Now, we need to use integration by parts again. |
| Let and |
| Then, and |
| Therefore, we get |
|
|
| Step 3: |
|---|
| Notice that the integral on the right of the last equation in Step 2 |
| is the same integral that we had at the beginning of the problem. |
| Thus, if we add the integral on the right to the other side of the equation, we get |
| Now, we divide both sides by 2 to get |
| Thus, the final answer is |
| Final Answer: |
|---|