Difference between revisions of "009B Sample Midterm 3, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 11: | Line 11: | ||
|- | |- | ||
| | | | ||
| − | You could use <math style="vertical-align: 0px">u</math>-substitution. | + | You could use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
| − | | Let <math style="vertical-align: -3px">u=x^2+1.</math> Then, <math style="vertical-align: -1px">du=2x~dx.</math> Thus, | + | | Let <math style="vertical-align: -3px">u=x^2+1.</math> |
| + | |- | ||
| + | | Then, <math style="vertical-align: -1px">du=2x~dx.</math> | ||
| + | |- | ||
| + | | Thus, | ||
|- | |- | ||
| | | | ||
| − | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int 2x(x^2+1)^3~dx} & = & \displaystyle{\int u^3~du}\\ | \displaystyle{\int 2x(x^2+1)^3~dx} & = & \displaystyle{\int u^3~du}\\ | ||
&&\\ | &&\\ | ||
| Line 34: | Line 38: | ||
|We proceed using <math style="vertical-align: 0px">u</math>-substitution. | |We proceed using <math style="vertical-align: 0px">u</math>-substitution. | ||
|- | |- | ||
| − | |Let <math style="vertical-align: -1px">u=x^3.</math> Then, <math style="vertical-align: -1px">du=3x^2~dx</math> and <math style="vertical-align: -14px">\frac{du}{3}=x^2~dx.</math> | + | |Let <math style="vertical-align: -1px">u=x^3.</math> |
| + | |- | ||
| + | |Then, <math style="vertical-align: -1px">du=3x^2~dx</math> and <math style="vertical-align: -14px">\frac{du}{3}=x^2~dx.</math> | ||
|- | |- | ||
|Therefore, we have | |Therefore, we have | ||
|- | |- | ||
| | | | ||
| − | <math>\int x^2\sin (x^3) ~dx=\int \frac{\sin(u)}{3}~du.</math> | + | <math>\int x^2\sin (x^3) ~dx=\int \frac{\sin(u)}{3}~du.</math> |
|} | |} | ||
| Line 48: | Line 54: | ||
|- | |- | ||
| | | | ||
| − | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int x^2\sin (x^3) ~dx} & = & \displaystyle{\frac{-1}{3}\cos(u)+C}\\ | \displaystyle{\int x^2\sin (x^3) ~dx} & = & \displaystyle{\frac{-1}{3}\cos(u)+C}\\ | ||
&&\\ | &&\\ | ||
| Line 61: | Line 67: | ||
|We proceed using u substitution. | |We proceed using u substitution. | ||
|- | |- | ||
| − | |Let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)~dx.</math> | + | |Let <math style="vertical-align: -5px">u=\cos(x).</math> |
| + | |- | ||
| + | |Then, <math style="vertical-align: -5px">du=-\sin(x)~dx.</math> | ||
|- | |- | ||
|Since this is a definite integral, we need to change the bounds of integration. | |Since this is a definite integral, we need to change the bounds of integration. | ||
| Line 74: | Line 82: | ||
|- | |- | ||
| | | | ||
| − | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du}\\ | \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du}\\ | ||
&&\\ | &&\\ | ||
| Line 87: | Line 95: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' <math>\frac{-1}{3}\cos(x^3)+C</math> | + | | '''(a)''' <math>\frac{-1}{3}\cos(x^3)+C</math> |
|- | |- | ||
| − | |'''(b)''' <math>0</math> | + | | '''(b)''' <math>0</math> |
|} | |} | ||
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 18:38, 7 February 2017
Compute the following integrals:
- a)
- b)
| Foundations: |
|---|
| How would you integrate |
|
You could use -substitution. |
| Let |
| Then, |
| Thus, |
|
|
Solution:
(a)
| Step 1: |
|---|
| We proceed using -substitution. |
| Let |
| Then, and |
| Therefore, we have |
|
|
| Step 2: |
|---|
| We integrate to get |
|
|
(b)
| Step 1: |
|---|
| We proceed using u substitution. |
| Let |
| Then, |
| Since this is a definite integral, we need to change the bounds of integration. |
| We have and |
| Step 2: |
|---|
| Therefore, we get |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |