Difference between revisions of "009B Sample Midterm 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|What does Part 1 of the Fundamental Theorem of Calculus say is the derivative of <math style="vertical-align: -16px">G(x)=\int_x^5 \frac{1}{1+u^{10}}~du?</math>
+
|What does Part 1 of the Fundamental Theorem of Calculus  
 +
|-
 +
|say is the derivative of <math style="vertical-align: -16px">G(x)=\int_x^5 \frac{1}{1+u^{10}}~du?</math>
 
|-
 
|-
 
|
 
|
&nbsp; First, we need to switch the bounds of integration.  
+
&nbsp;&nbsp;&nbsp;&nbsp; First, we need to switch the bounds of integration.  
 
|-
 
|-
 
|
 
|
&nbsp; So, we have <math style="vertical-align: -16px">G(x)=-\int_5^x \frac{1}{1+u^{10}}~du.</math>
+
&nbsp;&nbsp;&nbsp;&nbsp; So, we have <math style="vertical-align: -16px">G(x)=-\int_5^x \frac{1}{1+u^{10}}~du.</math>
 
|-
 
|-
 
|
 
|
&nbsp; By Part 1 of the Fundamental Theorem of Calculus, <math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math>  
+
&nbsp;&nbsp;&nbsp;&nbsp; By Part 1 of the Fundamental Theorem of Calculus, <math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math>  
 
|}
 
|}
  
Line 38: Line 40:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
 
|}
 
|}
  
Line 46: Line 48:
 
|First,   
 
|First,   
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -15px">F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.</math>
 
|-
 
|-
 
|Now, let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -15px">G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math>  
 
|Now, let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -15px">G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math>  
Line 53: Line 55:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; <math style="vertical-align: -5px">F(x)=-G(g(x)).</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">F(x)=-G(g(x)).</math>
 
|-
 
|-
 
|Hence,  
 
|Hence,  
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -5px">F'(x)=-G'(g(x))g'(x)</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">F'(x)=-G'(g(x))g'(x)</math>  
 
|-
 
|-
 
|by the Chain Rule.
 
|by the Chain Rule.
Line 65: Line 67:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Now, <math style="vertical-align: -5px">g'(x)=-\sin(x).</math>
+
|Now,  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">g'(x)=-\sin(x).</math>
 
|-
 
|-
 
|By the Fundamental Theorem of Calculus,  
 
|By the Fundamental Theorem of Calculus,  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; <math style="vertical-align: -15px">G'(x)=\frac{1}{1+x^{10}}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">G'(x)=\frac{1}{1+x^{10}}.</math>
 
|-
 
|-
 
|Hence,
 
|Hence,
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{F'(x)} & = & \displaystyle{-\frac{1}{1+\cos^{10}x}(-\sin(x))}\\
 
\displaystyle{F'(x)} & = & \displaystyle{-\frac{1}{1+\cos^{10}x}(-\sin(x))}\\
 
&&\\
 
&&\\
Line 100: Line 104:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
 
|-
 
|-
|&nbsp;&nbsp; <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math>
+
|&nbsp;&nbsp; &nbsp; &nbsp; <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:34, 7 February 2017

State the fundamental theorem of calculus, and use this theorem to find the derivative of


Foundations:  
What does Part 1 of the Fundamental Theorem of Calculus
say is the derivative of

     First, we need to switch the bounds of integration.

     So, we have

     By Part 1 of the Fundamental Theorem of Calculus,


Solution:

Step 1:  
The Fundamental Theorem of Calculus, Part 1

Let be continuous on and let

Then, is a differentiable function on and

The Fundamental Theorem of Calculus, Part 2

Let be continuous on and let be any antiderivative of Then,

       

Step 2:  
First,
       
Now, let and
Therefore,

       

Hence,
       
by the Chain Rule.
Step 3:  
Now,
       
By the Fundamental Theorem of Calculus,

       

Hence,

       


Final Answer:  
The Fundamental Theorem of Calculus, Part 1

Let be continuous on and let

Then, is a differentiable function on and

The Fundamental Theorem of Calculus, Part 2

Let be continuous on and let be any antiderivative of Then,

       

      

Return to Sample Exam