Difference between revisions of "009B Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
|-
 
|Recall:
 
 
|-
 
|-
 
|'''1.''' Recall the trig identity
 
|'''1.''' Recall the trig identity
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math>
 
|-
 
|-
 
|'''2.''' Also,  
 
|'''2.''' Also,  
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math>
 
|-
 
|-
 
|'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math>
 
|'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\tan x.</math> Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution.  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -2px">u=\tan x.</math>  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math>
 
|}
 
|}
  

Revision as of 17:30, 7 February 2017

Evaluate the integral:


Foundations:  
1. Recall the trig identity
       
2. Also,
       
3. How would you integrate

        You could use -substitution.

        Let
        Then,

        Thus,


Solution:

Step 1:  
First, we write
   
Using the trig identity
we have
Plugging in the last identity into one of the we get

   

by using the identity again on the last equality.
Step 2:  
So, we have
   
For the first integral, we need to use -substitution.
Let
Then,
So, we have
  
Step 3:  
We integrate to get

   


Final Answer:  
  

Return to Sample Exam