Difference between revisions of "009B Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|Recall the trig identities:
+
|'''1.''' Recall the trig identity
 
|-
 
|-
|'''1.''' <math style="vertical-align: -3px">\tan^2x+1=\sec^2x</math>
+
|&nbsp; &nbsp; <math style="vertical-align: -3px">\tan^2x+1=\sec^2x</math>
 
|-
 
|-
|'''2.''' <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}</math>
+
|'''2.''' Recall the trig identity
 +
|-
 +
|&nbsp; &nbsp; <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}</math>
 
|-
 
|-
 
|'''3.''' How would you integrate <math style="vertical-align: -1px">\tan x~dx?</math>
 
|'''3.''' How would you integrate <math style="vertical-align: -1px">\tan x~dx?</math>
 
|-
 
|-
 
|
 
|
::You could use <math style="vertical-align: 0px">u</math>-substitution. First, write <math style="vertical-align: -14px">\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math>
+
&nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution. First, write <math style="vertical-align: -14px">\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math>
 
|-
 
|-
 
|
 
|
::Now, let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> Thus,  
+
&nbsp; &nbsp; Now, let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> Thus,  
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int \tan x~dx} & = & \displaystyle{\int \frac{-1}{u}~du}\\
 
\displaystyle{\int \tan x~dx} & = & \displaystyle{\int \frac{-1}{u}~du}\\
 
&&\\
 
&&\\
Line 82: Line 84:
 
&nbsp; &nbsp;<math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math>
 
&nbsp; &nbsp;<math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math>
 
|-
 
|-
|Now, we let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> So, we get  
+
|Now, we let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math>  
 +
|-
 +
|Therefore, we get  
 
|-
 
|-
 
|
 
|
Line 100: Line 104:
 
|One of the double angle formulas is <math style="vertical-align: -5px">\cos(2x)=1-2\sin^2(x).</math>  
 
|One of the double angle formulas is <math style="vertical-align: -5px">\cos(2x)=1-2\sin^2(x).</math>  
 
|-
 
|-
|Solving for <math style="vertical-align: -5px">\sin^2(x),</math> we get <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}.</math>
+
|Solving for <math style="vertical-align: -5px">\sin^2(x),</math> we get  
 +
|-
 +
|&nbsp; &nbsp; <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}.</math>
 
|-
 
|-
 
|Plugging this identity into our integral, we get  
 
|Plugging this identity into our integral, we get  
Line 132: Line 138:
 
|Let <math style="vertical-align: -1px">u=2x.</math> Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -18px">\frac{du}{2}=dx.</math>  
 
|Let <math style="vertical-align: -1px">u=2x.</math> Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -18px">\frac{du}{2}=dx.</math>  
 
|-
 
|-
|Also, since this is a definite integral and we are using <math style="vertical-align: 0px">u</math>-substitution, we need to change the bounds of integration.  
+
|Also, since this is a definite integral and we are using <math style="vertical-align: 0px">u</math>-substitution,  
 +
|-
 +
|we need to change the bounds of integration.  
 
|-
 
|-
 
|We have <math style="vertical-align: -5px">u_1=2(0)=0</math> and <math style="vertical-align: -5px">u_2=2(\pi)=2\pi.</math>
 
|We have <math style="vertical-align: -5px">u_1=2(0)=0</math> and <math style="vertical-align: -5px">u_2=2(\pi)=2\pi.</math>

Revision as of 10:23, 7 February 2017

Evaluate the indefinite and definite integrals.

a)  
b)  


Foundations:  
1. Recall the trig identity
   
2. Recall the trig identity
   
3. How would you integrate

    You could use -substitution. First, write

    Now, let Then, Thus,

   


Solution:

(a)

Step 1:  
We start by writing

   

Since we have

   

Step 2:  
Now, we need to use -substitution for the first integral.

Let Then, So, we have

   

Step 3:  
For the remaining integral, we also need to use -substitution.
First, we write

   

Now, we let Then,
Therefore, we get

   

(b)

Step 1:  
One of the double angle formulas is
Solving for we get
   
Plugging this identity into our integral, we get

   

Step 2:  
If we integrate the first integral, we get

   

Step 3:  
For the remaining integral, we need to use -substitution.
Let Then, and
Also, since this is a definite integral and we are using -substitution,
we need to change the bounds of integration.
We have and
So, the integral becomes

   


Final Answer:  
(a)  
(b)  

Return to Sample Exam