Difference between revisions of "009B Sample Midterm 3, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 10: | Line 10: | ||
|- | |- | ||
| | | | ||
| − | + | First, we need to switch the bounds of integration. | |
|- | |- | ||
| | | | ||
| − | + | So, we have <math style="vertical-align: -16px">G(x)=-\int_5^x \frac{1}{1+u^{10}}~du.</math> | |
|- | |- | ||
| | | | ||
| − | + | By Part 1 of the Fundamental Theorem of Calculus, <math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math> | |
|} | |} | ||
| Line 27: | Line 27: | ||
|- | |- | ||
| | | | ||
| − | + | Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> | |
|- | |- | ||
| | | | ||
| − | + | Then, <math style="vertical-align: -1px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> | |
|- | |- | ||
|'''The Fundamental Theorem of Calculus, Part 2''' | |'''The Fundamental Theorem of Calculus, Part 2''' | ||
|- | |- | ||
| | | | ||
| − | + | Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math> Then, | |
|- | |- | ||
| | | | ||
| − | + | <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> | |
|} | |} | ||
| Line 44: | Line 44: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |First, | + | |First, |
|- | |- | ||
| − | | | + | | <math style="vertical-align: -15px">F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.</math> |
| − | |||
|- | |- | ||
|Now, let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -15px">G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math> | |Now, let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -15px">G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math> | ||
|- | |- | ||
| − | | | + | |Therefore, |
|- | |- | ||
| | | | ||
| − | : | + | <math style="vertical-align: -5px">F(x)=-G(g(x)).</math> |
| + | |- | ||
| + | |Hence, | ||
| + | |- | ||
| + | | <math style="vertical-align: -5px">F'(x)=-G'(g(x))g'(x)</math> | ||
|- | |- | ||
| − | | | + | |by the Chain Rule. |
|} | |} | ||
| Line 67: | Line 70: | ||
|- | |- | ||
| | | | ||
| − | + | <math style="vertical-align: -15px">G'(x)=\frac{1}{1+x^{10}}.</math> | |
|- | |- | ||
|Hence, | |Hence, | ||
|- | |- | ||
| | | | ||
| − | + | <math>\begin{array}{rcl} | |
\displaystyle{F'(x)} & = & \displaystyle{-\frac{1}{1+\cos^{10}x}(-\sin(x))}\\ | \displaystyle{F'(x)} & = & \displaystyle{-\frac{1}{1+\cos^{10}x}(-\sin(x))}\\ | ||
&&\\ | &&\\ | ||
| Line 94: | Line 97: | ||
|- | |- | ||
| | | | ||
| − | Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math> | + | Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math> Then, |
|- | |- | ||
| | | | ||
| − | + | <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> | |
|- | |- | ||
| <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math> | | <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math> | ||
|} | |} | ||
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 10:14, 7 February 2017
State the fundamental theorem of calculus, and use this theorem to find the derivative of
| Foundations: |
|---|
| What does Part 1 of the Fundamental Theorem of Calculus say is the derivative of |
|
First, we need to switch the bounds of integration. |
|
So, we have |
|
By Part 1 of the Fundamental Theorem of Calculus, |
Solution:
| Step 1: |
|---|
| The Fundamental Theorem of Calculus, Part 1 |
|
Let be continuous on and let |
|
Then, is a differentiable function on and |
| The Fundamental Theorem of Calculus, Part 2 |
|
Let be continuous on and let be any antiderivative of Then, |
|
|
| Step 2: |
|---|
| First, |
| Now, let and |
| Therefore, |
|
|
| Hence, |
| by the Chain Rule. |
| Step 3: |
|---|
| Now, |
| By the Fundamental Theorem of Calculus, |
|
|
| Hence, |
|
|
| Final Answer: |
|---|
| The Fundamental Theorem of Calculus, Part 1 |
|
Let be continuous on and let |
|
Then, is a differentiable function on and |
| The Fundamental Theorem of Calculus, Part 2 |
|
Let be continuous on and let be any antiderivative of Then, |
|
|