Difference between revisions of "009B Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1.''' <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math>
+
|'''1.''' Recall the trig identity
 
|-
 
|-
|'''2.''' <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math>
+
|&nbsp; &nbsp; <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math>
 +
|-
 +
|'''2.''' Also,
 +
|-
 +
|&nbsp; &nbsp; <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math>
 
|-
 
|-
 
|'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math>
 
|'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math>
 
|-
 
|-
 
|
 
|
::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\tan x.</math> Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math>
+
&nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\tan x.</math> Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math>
 
|-
 
|-
 
|
 
|
::Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math>
+
&nbsp; &nbsp; Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math>
 
|}
 
|}
  
Line 28: Line 32:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we write <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx.</math>  
+
|First, we write  
 +
|-
 +
|&nbsp; &nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx.</math>  
 
|-
 
|-
|Using the trig identity <math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1,</math> we have <math style="vertical-align: -5px">\tan^2(x)=\sec^2(x)-1.</math>
+
|Using the trig identity <math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1,</math>  
 +
|-
 +
|we have <math style="vertical-align: -5px">\tan^2(x)=\sec^2(x)-1.</math>
 
|-
 
|-
 
|Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x),</math> we get
 
|Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x),</math> we get
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) (\sec^2(x)-1)~dx=\int \tan^2(x)\sec^2(x)~dx-\int \tan^2(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx</math>
+
|  
 +
&nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\int \tan^2(x) (\sec^2(x)-1)~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int \tan^2(x)\sec^2(x)~dx-\int \tan^2(x)~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx}
 +
\end{array}</math>
 
|-
 
|-
 
|by using the identity again on the last equality.
 
|by using the identity again on the last equality.
Line 42: Line 57:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|So, we have <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx.</math>
+
|So, we have  
 +
|-
 +
|&nbsp; &nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx.</math>
 +
|-
 +
|For the first integral, we need to use <math style="vertical-align: 0px">u</math>-substitution.
 +
|-
 +
|Let <math style="vertical-align: -5px">u=\tan(x).</math>  
 
|-
 
|-
|For the first integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\tan(x).</math> Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math>
+
|Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math>
 
|-
 
|-
 
|So, we have
 
|So, we have
Line 56: Line 77:
 
|We integrate to get  
 
|We integrate to get  
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx= \frac{u^3}{3}-(\tan(x)-x)+C=\frac{\tan^3(x)}{3}-\tan(x)+x+C.</math>
+
|  
 +
&nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\frac{u^3}{3}-(\tan(x)-x)+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\tan^3(x)}{3}-\tan(x)+x+C.}
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 09:57, 7 February 2017

Evaluate the integral:


Foundations:  
Recall:
1. Recall the trig identity
   
2. Also,
   
3. How would you integrate

    You could use -substitution. Let Then,

    Thus,


Solution:

Step 1:  
First, we write
   
Using the trig identity
we have
Plugging in the last identity into one of the we get

   

by using the identity again on the last equality.
Step 2:  
So, we have
   
For the first integral, we need to use -substitution.
Let
Then,
So, we have
  
Step 3:  
We integrate to get

   


Final Answer:  
  

Return to Sample Exam