Difference between revisions of "009B Sample Midterm 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' Integration by parts tells us <math style="vertical-align: -15px">\int u~dv=uv-\int v~du.</math>
+
|'''1.''' Integration by parts tells us  
 +
|-
 +
|&nbsp; &nbsp; <math style="vertical-align: -15px">\int u~dv=uv-\int v~du.</math>
 
|-
 
|-
 
|'''2.''' How would you integrate <math style="vertical-align: -15px">\int e^x\sin x~dx?</math>
 
|'''2.''' How would you integrate <math style="vertical-align: -15px">\int e^x\sin x~dx?</math>
 
|-
 
|-
 
|
 
|
::You could use integration by parts.
+
&nbsp; &nbsp; You could use integration by parts.
 
|-
 
|-
 
|
 
|
::Let <math style="vertical-align: -5px">u=\sin(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> Then, <math style="vertical-align: -5px">du=\cos(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math>
+
&nbsp; &nbsp; Let <math style="vertical-align: -5px">u=\sin(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math>  
 +
|-
 +
|&nbsp; &nbsp; Then, <math style="vertical-align: -5px">du=\cos(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math>
 
|-
 
|-
 
|
 
|
::Thus, <math style="vertical-align: -15px">\int e^x\sin x~dx=e^x\sin(x)-\int e^x\cos(x)~dx.</math>
+
&nbsp; &nbsp; Thus, <math style="vertical-align: -15px">\int e^x\sin x~dx=e^x\sin(x)-\int e^x\cos(x)~dx.</math>
 
|-
 
|-
 
|
 
|
::Now, we need to use integration by parts a second time.
+
&nbsp; &nbsp; Now, we need to use integration by parts a second time.
 
|-
 
|-
 
|
 
|
::Let <math style="vertical-align: -5px">u=\cos(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> Then, <math style="vertical-align: -5px">du=-\sin(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> So,
+
&nbsp; &nbsp; Let <math style="vertical-align: -5px">u=\cos(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> Then, <math style="vertical-align: -5px">du=-\sin(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> So,
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int e^x\sin x~dx} & = & \displaystyle{e^x\sin(x)-(e^x\cos(x)-\int -e^x\sin(x)~dx}\\
 
\displaystyle{\int e^x\sin x~dx} & = & \displaystyle{e^x\sin(x)-(e^x\cos(x)-\int -e^x\sin(x)~dx}\\
 
&&\\
 
&&\\
Line 34: Line 38:
 
|-
 
|-
 
|
 
|
::Notice, we are back where we started. So, adding the last term on the right hand side to the opposite side,
+
&nbsp; &nbsp; Notice, we are back where we started. So, adding the last term on the right hand side to the opposite side,
 
|-
 
|-
 
|
 
|
::we get <math style="vertical-align: -13px">2\int e^x\sin (x)~dx=e^x(\sin(x)-\cos(x)).</math>
+
&nbsp; &nbsp; we get <math style="vertical-align: -13px">2\int e^x\sin (x)~dx=e^x(\sin(x)-\cos(x)).</math>
 
|-
 
|-
 
|
 
|
::Hence, <math style="vertical-align: -15px">\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C.</math>
+
&nbsp; &nbsp; Hence, <math style="vertical-align: -15px">\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C.</math>
 
|}
 
|}
  
Line 48: Line 52:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We proceed using integration by parts. Let <math style="vertical-align: -5px">u=\sin(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math> Then, <math style="vertical-align: -5px">du=2\cos(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math>
+
|We proceed using integration by parts.  
 +
|-
 +
|Let <math style="vertical-align: -5px">u=\sin(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math>  
 +
|-
 +
|Then, <math style="vertical-align: -5px">du=2\cos(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math>
 
|-
 
|-
 
|So, we get  
 
|So, we get  
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -14px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}-\int \frac{e^{-2x}2\cos(2x)~dx}{-2}=\frac{\sin(2x)e^{-2x}}{-2}+\int e^{-2x}\cos(2x)~dx.</math>
+
|
 +
&nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int e^{-2x}\sin (2x)~dx} & = & \displaystyle{\frac{\sin(2x)e^{-2x}}{-2}-\int \frac{e^{-2x}2\cos(2x)~dx}{-2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\sin(2x)e^{-2x}}{-2}+\int e^{-2x}\cos(2x)~dx.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 58: Line 71:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we need to use integration by parts again. Let <math style="vertical-align: -5px">u=\cos(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math> Then, <math style="vertical-align: -5px">du=-2\sin(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math>
+
|Now, we need to use integration by parts again.  
 
|-
 
|-
|So, we get  
+
|Let <math style="vertical-align: -5px">u=\cos(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math>
 +
|-
 +
|Then, <math style="vertical-align: -5px">du=-2\sin(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math>
 +
|-
 +
|Therefore, we get  
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx.</math>
+
|
 +
&nbsp;&nbsp; <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx.</math>
 
|-
 
|-
 
|
 
|
Line 70: Line 88:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Notice that the integral on the right of the last equation in Step 2 is the same integral that we had at the beginning of the problem.
+
|Notice that the integral on the right of the last equation in Step 2
 
|-
 
|-
|So, if we add the integral on the right to the other side of the equation, we get
+
|is the same integral that we had at the beginning of the problem.
 +
|-
 +
|Thus, if we add the integral on the right to the other side of the equation, we get
 
|-
 
|-
 
| &nbsp;&nbsp; <math>2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}.</math>
 
| &nbsp;&nbsp; <math>2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}.</math>
Line 80: Line 100:
 
| &nbsp;&nbsp; <math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}.</math>
 
| &nbsp;&nbsp; <math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}.</math>
 
|-
 
|-
|Thus, the final answer is <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C.</math>
+
|Thus, the final answer is  
 +
|-
 +
|&nbsp; &nbsp; <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C.</math>
 
|}
 
|}
  

Revision as of 09:52, 7 February 2017

Evaluate the integral:


Foundations:  
1. Integration by parts tells us
   
2. How would you integrate

    You could use integration by parts.

    Let and

    Then, and

    Thus,

    Now, we need to use integration by parts a second time.

    Let and Then, and So,

   

    Notice, we are back where we started. So, adding the last term on the right hand side to the opposite side,

    we get

    Hence,


Solution:

Step 1:  
We proceed using integration by parts.
Let and
Then, and
So, we get

   

Step 2:  
Now, we need to use integration by parts again.
Let and
Then, and
Therefore, we get

  

Step 3:  
Notice that the integral on the right of the last equation in Step 2
is the same integral that we had at the beginning of the problem.
Thus, if we add the integral on the right to the other side of the equation, we get
  
Now, we divide both sides by 2 to get
  
Thus, the final answer is
   


Final Answer:  
  

Return to Sample Exam