Difference between revisions of "009B Sample Midterm 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 14: | Line 14: | ||
|- | |- | ||
| | | | ||
| − | + | Part 1 of the Fundamental Theorem of Calculus says that | |
| + | |- | ||
| + | | <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt=\sin(x).</math> | ||
|- | |- | ||
|'''2.''' What does Part 2 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\int_a^b\sec^2x~dx</math> where <math style="vertical-align: -5px">a,b</math> are constants? | |'''2.''' What does Part 2 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\int_a^b\sec^2x~dx</math> where <math style="vertical-align: -5px">a,b</math> are constants? | ||
|- | |- | ||
| | | | ||
| − | + | Part 2 of the Fundamental Theorem of Calculus says that | |
| + | |- | ||
| + | | <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math> where <math style="vertical-align: 0px">F</math> is any antiderivative of <math style="vertical-align: 0px">\sec^2x.</math> | ||
|} | |} | ||
| Line 46: | Line 50: | ||
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math> | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math> | ||
|- | |- | ||
| − | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> | + | |Then, |
| + | |- | ||
| + | | <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> | ||
|} | |} | ||
| + | |||
'''(b)''' | '''(b)''' | ||
| Line 53: | Line 60: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |Let <math style="vertical-align: -15px">F(x)=\int_0^{\cos (x)}\sin (t)~dt.</math> The problem is asking us to find <math style="vertical-align: -5px">F'(x).</math> | + | |Let <math style="vertical-align: -15px">F(x)=\int_0^{\cos (x)}\sin (t)~dt.</math> |
| + | |- | ||
| + | |The problem is asking us to find <math style="vertical-align: -5px">F'(x).</math> | ||
|- | |- | ||
|Let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -14px">G(x)=\int_0^x \sin(t)~dt.</math> | |Let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -14px">G(x)=\int_0^x \sin(t)~dt.</math> | ||
|- | |- | ||
| − | |Then, <math style="vertical-align: -5px">F(x)=G(g(x)).</math> | + | |Then, |
| + | |- | ||
| + | | <math style="vertical-align: -5px">F(x)=G(g(x)).</math> | ||
|} | |} | ||
| Line 63: | Line 74: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |If we take the derivative of both sides of the last equation, we get <math style="vertical-align: -5px">F'(x)=G'(g(x))g'(x)</math> by the Chain Rule. | + | |If we take the derivative of both sides of the last equation, |
| + | |- | ||
| + | |we get <math style="vertical-align: -5px">F'(x)=G'(g(x))g'(x)</math> by the Chain Rule. | ||
|} | |} | ||
| Line 96: | Line 109: | ||
|- | |- | ||
| <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1.</math> | | <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1.</math> | ||
| − | |||
| − | |||
|} | |} | ||
Revision as of 08:33, 7 February 2017
This problem has three parts:
- a) State the Fundamental Theorem of Calculus.
- b) Compute
- c) Evaluate
| Foundations: |
|---|
| 1. What does Part 1 of the Fundamental Theorem of Calculus say about |
|
Part 1 of the Fundamental Theorem of Calculus says that |
| 2. What does Part 2 of the Fundamental Theorem of Calculus say about where are constants? |
|
Part 2 of the Fundamental Theorem of Calculus says that |
| where is any antiderivative of |
Solution:
(a)
| Step 1: |
|---|
| The Fundamental Theorem of Calculus has two parts. |
| The Fundamental Theorem of Calculus, Part 1 |
| Let be continuous on and let |
| Then, is a differentiable function on and |
| Step 2: |
|---|
| The Fundamental Theorem of Calculus, Part 2 |
| Let be continuous on and let be any antiderivative of |
| Then, |
(b)
| Step 1: |
|---|
| Let |
| The problem is asking us to find |
| Let and |
| Then, |
| Step 2: |
|---|
| If we take the derivative of both sides of the last equation, |
| we get by the Chain Rule. |
| Step 3: |
|---|
| Now, and by the Fundamental Theorem of Calculus, Part 1. |
| Since |
| we have |
(c)
| Step 1: |
|---|
| Using the Fundamental Theorem of Calculus, Part 2, we have |
| Step 2: |
|---|
| So, we get |
| Final Answer: |
|---|
| (a) |
| The Fundamental Theorem of Calculus, Part 1 |
| Let be continuous on and let |
| Then, is a differentiable function on and |
| The Fundamental Theorem of Calculus, Part 2 |
| Let be continuous on and let be any antiderivative of |
| Then, |
| (b) |
| (c) |