Difference between revisions of "009B Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 28: Line 28:
 
|Then, <math style="vertical-align: 0px">du=3x^2dx</math> and&thinsp; <math style="vertical-align: -13px">\frac{du}{3}=x^2dx.</math>
 
|Then, <math style="vertical-align: 0px">du=3x^2dx</math> and&thinsp; <math style="vertical-align: -13px">\frac{du}{3}=x^2dx.</math>
 
|-
 
|-
|Therefore, the integral becomes&thinsp; <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du.</math>
+
|Therefore, the integral becomes  
 +
|-
 +
|&nbsp; &nbsp; <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du.</math>
 
|}
 
|}
  
Line 57: Line 59:
 
|we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1.</math>
 
|we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1.</math>
 
|-
 
|-
|Therefore, the integral becomes <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du.</math>
+
|Therefore, the integral becomes  
 +
|-
 +
|&nbsp; &nbsp; <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du.</math>
 
|}
 
|}
  

Revision as of 09:01, 7 February 2017

Evaluate the indefinite and definite integrals.

a)  
b)  


Foundations:  
How would you integrate

    You could use -substitution. Let Then,

    Thus,


Solution:

(a)

Step 1:  
We need to use -substitution. Let
Then, and 
Therefore, the integral becomes
   
Step 2:  
We now have:
   

(b)

Step 1:  
Again, we need to use -substitution. Let Then,
Also, we need to change the bounds of integration.
Plugging in our values into the equation
we get and
Therefore, the integral becomes
   
Step 2:  
We now have:

   


Final Answer:  
(a)  
(b)  

Return to Sample Exam