Difference between revisions of "009B Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 31: Line 31:
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 41: Line 42:
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math>  
+
&nbsp; &nbsp;<math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math>  
 
|-
 
|-
 
|Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have  
 
|Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have  
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int (\sec^2x-1)\tan x ~dx}\\
 
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int (\sec^2x-1)\tan x ~dx}\\
 
&&\\
 
&&\\
Line 59: Line 60:
 
|-
 
|-
 
|
 
|
::Let <math style="vertical-align: -5px">u=\tan(x).</math> Then, <math style="vertical-align: -1px">du=\sec^2x~dx.</math> So, we have
+
Let <math style="vertical-align: -5px">u=\tan(x).</math> Then, <math style="vertical-align: -1px">du=\sec^2x~dx.</math> So, we have
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int u~du-\int \tan x~dx}\\
 
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int u~du-\int \tan x~dx}\\
 
&&\\
 
&&\\
Line 79: Line 80:
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math>
+
&nbsp; &nbsp;<math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math>
 
|-
 
|-
 
|Now, we let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> So, we get  
 
|Now, we let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> So, we get  
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\frac{\tan^2x}{2}+\int \frac{1}{u}~dx}\\
 
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\frac{\tan^2x}{2}+\int \frac{1}{u}~dx}\\
 
&&\\
 
&&\\
Line 104: Line 105:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\int_0^\pi \frac{1-\cos(2x)}{2}~dx}\\
 
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\int_0^\pi \frac{1-\cos(2x)}{2}~dx}\\
 
&&\\
 
&&\\
Line 117: Line 118:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx}\\
 
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx}\\
 
&&\\
 
&&\\
Line 138: Line 139:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du}\\
 
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du}\\
 
&&\\
 
&&\\
Line 148: Line 149:
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' <math>\frac{\tan^2x}{2}+\ln |\cos x|+C</math>
+
|'''(a)''' &nbsp; <math>\frac{\tan^2x}{2}+\ln |\cos x|+C</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' <math>\frac{\pi}{2}</math>
+
|'''(b)''' &nbsp; <math>\frac{\pi}{2}</math>
 
|}
 
|}
  
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 09:55, 6 February 2017

Evaluate the indefinite and definite integrals.

a)  
b)  


Foundations:  
Recall the trig identities:
1.
2.
How would you integrate
You could use -substitution. First, write
Now, let Then, Thus,


Solution:

(a)

Step 1:  
We start by writing

   

Since we have

   

Step 2:  
Now, we need to use -substitution for the first integral.

Let Then, So, we have

   

Step 3:  
For the remaining integral, we also need to use -substitution.
First, we write

   

Now, we let Then, So, we get

   

(b)

Step 1:  
One of the double angle formulas is
Solving for we get
Plugging this identity into our integral, we get

   

Step 2:  
If we integrate the first integral, we get

   

Step 3:  
For the remaining integral, we need to use -substitution.
Let Then, and
Also, since this is a definite integral and we are using -substitution, we need to change the bounds of integration.
We have and
So, the integral becomes

   


Final Answer:  
(a)  
(b)  

Return to Sample Exam