Difference between revisions of "009B Sample Midterm 3, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 18: | Line 18: | ||
::By Part 1 of the Fundamental Theorem of Calculus, <math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math> | ::By Part 1 of the Fundamental Theorem of Calculus, <math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math> | ||
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 77: | Line 78: | ||
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | |'''The Fundamental Theorem of Calculus, Part 1''' |
|- | |- | ||
| | | | ||
− | + | Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> | |
|- | |- | ||
| | | | ||
− | + | Then, <math style="vertical-align: -1px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> | |
|- | |- | ||
− | | | + | |'''The Fundamental Theorem of Calculus, Part 2''' |
|- | |- | ||
| | | | ||
− | + | Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math> | |
|- | |- | ||
| | | | ||
− | + | Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> | |
|- | |- | ||
| <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math> | | <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math> | ||
|} | |} | ||
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 09:48, 6 February 2017
State the fundamental theorem of calculus, and use this theorem to find the derivative of
Foundations: |
---|
What does Part 1 of the Fundamental Theorem of Calculus say is the derivative of |
|
|
|
Solution:
Step 1: |
---|
The Fundamental Theorem of Calculus, Part 1 |
|
|
The Fundamental Theorem of Calculus, Part 2 |
|
|
Step 2: |
---|
First, we have |
|
Now, let and |
So, |
|
Hence, by the Chain Rule. |
Step 3: |
---|
Now, |
By the Fundamental Theorem of Calculus, |
|
Hence, |
|
Final Answer: |
---|
The Fundamental Theorem of Calculus, Part 1 |
Let be continuous on and let |
Then, is a differentiable function on and |
The Fundamental Theorem of Calculus, Part 2 |
Let be continuous on and let be any antiderivative of |
Then, |