Difference between revisions of "009B Sample Midterm 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 21: | Line 21: | ||
::Part 2 of the Fundamental Theorem of Calculus says that <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math> where <math style="vertical-align: 0px">F</math> is any antiderivative of <math style="vertical-align: 0px">\sec^2x.</math> | ::Part 2 of the Fundamental Theorem of Calculus says that <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math> where <math style="vertical-align: 0px">F</math> is any antiderivative of <math style="vertical-align: 0px">\sec^2x.</math> | ||
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 33: | Line 34: | ||
|'''The Fundamental Theorem of Calculus, Part 1''' | |'''The Fundamental Theorem of Calculus, Part 1''' | ||
|- | |- | ||
− | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math> | + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> |
|- | |- | ||
− | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> | + | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> |
|} | |} | ||
Line 43: | Line 44: | ||
|'''The Fundamental Theorem of Calculus, Part 2''' | |'''The Fundamental Theorem of Calculus, Part 2''' | ||
|- | |- | ||
− | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f</math> | + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math> |
|- | |- | ||
− | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math> | + | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> |
|} | |} | ||
'''(b)''' | '''(b)''' | ||
Line 52: | Line 53: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Let <math style="vertical-align: -15px">F(x)=\int_0^{\cos (x)}\sin (t)~dt</math> | + | |Let <math style="vertical-align: -15px">F(x)=\int_0^{\cos (x)}\sin (t)~dt.</math> The problem is asking us to find <math style="vertical-align: -5px">F'(x).</math> |
|- | |- | ||
− | |Let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -14px">G(x)=\int_0^x \sin(t)~dt</math> | + | |Let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -14px">G(x)=\int_0^x \sin(t)~dt.</math> |
|- | |- | ||
− | |Then, <math style="vertical-align: -5px">F(x)=G(g(x))</math> | + | |Then, <math style="vertical-align: -5px">F(x)=G(g(x)).</math> |
|} | |} | ||
Line 70: | Line 71: | ||
|Now, <math style="vertical-align: -5px">g'(x)=-\sin(x)</math> and <math style="vertical-align: -5px">G'(x)=\sin(x)</math> by the '''Fundamental Theorem of Calculus, Part 1'''. | |Now, <math style="vertical-align: -5px">g'(x)=-\sin(x)</math> and <math style="vertical-align: -5px">G'(x)=\sin(x)</math> by the '''Fundamental Theorem of Calculus, Part 1'''. | ||
|- | |- | ||
− | |Since <math style="vertical-align: - | + | |Since |
+ | |- | ||
+ | | <math style="vertical-align: -4px">G'(g(x))=\sin(g(x))=\sin(\cos(x)),</math> | ||
+ | |- | ||
+ | |we have | ||
+ | |- | ||
+ | | <math style="vertical-align: -5px">F'(x)=G'(g(x))\cdot g'(x)=\sin(\cos(x))\cdot(-\sin(x)).</math> | ||
|} | |} | ||
Line 80: | Line 87: | ||
| Using the '''Fundamental Theorem of Calculus, Part 2''', we have | | Using the '''Fundamental Theorem of Calculus, Part 2''', we have | ||
|- | |- | ||
− | | <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan(x)\biggr|_{0}^{\pi/4}</math> | + | | <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan(x)\biggr|_{0}^{\pi/4}.</math> |
|} | |} | ||
Line 88: | Line 95: | ||
|So, we get | |So, we get | ||
|- | |- | ||
− | | <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1</math> | + | | <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1.</math> |
|- | |- | ||
| | | | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 100: | Line 108: | ||
|'''The Fundamental Theorem of Calculus, Part 1''' | |'''The Fundamental Theorem of Calculus, Part 1''' | ||
|- | |- | ||
− | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math> | + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math> |
|- | |- | ||
− | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> | + | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math> |
|- | |- | ||
|'''The Fundamental Theorem of Calculus, Part 2''' | |'''The Fundamental Theorem of Calculus, Part 2''' | ||
|- | |- | ||
− | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f</math> | + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math> |
|- | |- | ||
− | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math> | + | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> |
|- | |- | ||
− | |'''(b)''' <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x))</math> | + | |'''(b)''' <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x)).</math> |
|- | |- | ||
− | |'''(c)''' <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1</math> | + | |'''(c)''' <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1.</math> |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 09:25, 6 February 2017
This problem has three parts:
- a) State the Fundamental Theorem of Calculus.
- b) Compute
- c) Evaluate
Foundations: |
---|
1. What does Part 1 of the Fundamental Theorem of Calculus say about |
|
2. What does Part 2 of the Fundamental Theorem of Calculus say about where are constants? |
|
Solution:
(a)
Step 1: |
---|
The Fundamental Theorem of Calculus has two parts. |
The Fundamental Theorem of Calculus, Part 1 |
Let be continuous on and let |
Then, is a differentiable function on and |
Step 2: |
---|
The Fundamental Theorem of Calculus, Part 2 |
Let be continuous on and let be any antiderivative of |
Then, |
(b)
Step 1: |
---|
Let The problem is asking us to find |
Let and |
Then, |
Step 2: |
---|
If we take the derivative of both sides of the last equation, we get by the Chain Rule. |
Step 3: |
---|
Now, and by the Fundamental Theorem of Calculus, Part 1. |
Since |
we have |
(c)
Step 1: |
---|
Using the Fundamental Theorem of Calculus, Part 2, we have |
Step 2: |
---|
So, we get |
Final Answer: |
---|
(a) |
The Fundamental Theorem of Calculus, Part 1 |
Let be continuous on and let |
Then, is a differentiable function on and |
The Fundamental Theorem of Calculus, Part 2 |
Let be continuous on and let be any antiderivative of |
Then, |
(b) |
(c) |