Difference between revisions of "009B Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 24: Line 24:
 
|First, we write  
 
|First, we write  
 
|-
 
|-
| &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx</math>.
+
| &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx.</math>
 
|-
 
|-
|Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>, we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x</math>. If we use this identity, we have
+
|Using the identity <math style="vertical-align: -4px">\sin^2x+\cos^2x=1,</math> we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math> If we use this identity, we have
 
|-
 
|-
| &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) (1-\cos^2x)\cos^2x~dx=\int (\cos^2x-\cos^4x)\sin(x)~dx</math>.
+
| &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) (1-\cos^2x)\cos^2x~dx=\int (\cos^2x-\cos^4x)\sin(x)~dx.</math>
 
|-
 
|-
 
|
 
|
Line 36: Line 36:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\cos(x)</math>. Then, <math style="vertical-align: -5px">du=-\sin(x)dx</math>. Therefore,  
+
|Now, we use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> Therefore,  
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -14px">\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math>.
+
| &nbsp;&nbsp; <math style="vertical-align: -14px">\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C.</math>
 
|}
 
|}
  

Revision as of 09:08, 6 February 2017

Evaluate the integral:


Foundations:  
Recall the trig identity:
How would you integrate
You could use -substitution. Let Then,
Thus,

Solution:

Step 1:  
First, we write
   
Using the identity we get If we use this identity, we have
   
Step 2:  
Now, we use -substitution. Let Then, Therefore,
  
Final Answer:  
  

Return to Sample Exam