Difference between revisions of "009B Sample Midterm 2, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam"> Evaluate |
− | ::<span class="exam">a) | + | ::<span class="exam">a) <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math> |
− | ::<span class="exam">b) | + | ::<span class="exam">b) <math style="vertical-align: -14px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math> |
− | |||
− | |||
Line 11: | Line 9: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |How would you integrate <math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx?</math> |
|- | |- | ||
| | | | ||
− | :: | + | ::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=x^2+x.</math> Then, <math style="vertical-align: -4px">du=(2x+1)~dx.</math> |
− | |||
− | |||
|- | |- | ||
| | | | ||
− | :: | + | ::Thus, <math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx=\int \sqrt{u}=\frac{2}{3}u^{3/2}+C=\frac{2}{3}(x^2+x)^{3/2}+C.</math> |
|} | |} | ||
Line 25: | Line 21: | ||
'''(a)''' | '''(a)''' | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We multiply the product inside the integral to get |
|- | |- | ||
− | | | + | | <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt=\int_1^2 (8t^3+2-15t^{-3})~dt</math>. |
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
Line 41: | Line 32: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |We integrate to get |
|- | |- | ||
− | | | + | | <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2</math>. |
|- | |- | ||
− | | | + | |We now evaluate to get |
+ | |- | ||
+ | | <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math>. | ||
|} | |} | ||
+ | |||
'''(b)''' | '''(b)''' | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Let <math style="vertical-align: - | + | |We use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=x^4+2x^2+4</math>. Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx</math>. Also, we need to change the bounds of integration. |
|- | |- | ||
− | | | + | |Plugging in our values into the equation <math style="vertical-align: -2px">u=x^4+2x^2+4</math>, we get <math style="vertical-align: -5px">u_1=0^4+2(0)^2+4=4</math> and <math style="vertical-align: -4px">u_2=2^4+2(2)^2+4=28</math>. |
|- | |- | ||
− | | | + | |Therefore, the integral becomes <math style="vertical-align: -14px">\frac{1}{4}\int_4^{28}\sqrt{u}~du</math>. |
+ | |- | ||
+ | | | ||
|} | |} | ||
Line 62: | Line 57: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |We now have: |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | <math>\ | + | | <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{1}{4}\int_4^{28}\sqrt{u}~du=\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}=\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})=\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)=\frac{1}{6}((2\sqrt{7})^3-2^3)</math>. |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | |So, we | + | |So, we have |
|- | |- | ||
− | | <math style="vertical-align: -16px">\ | + | | <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}</math>. |
− | |||
− | |||
|} | |} | ||
Line 96: | Line 69: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a | + | |'''(a)''' <math>\frac{211}{8}</math> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | |'''( | + | |'''(b)''' <math>\frac{28\sqrt{7}-4}{3}</math> |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 10:17, 5 February 2017
Evaluate
- a)
- b)
Foundations: |
---|
How would you integrate |
|
|
Solution:
(a)
Step 1: |
---|
We multiply the product inside the integral to get |
. |
Step 2: |
---|
We integrate to get |
. |
We now evaluate to get |
. |
(b)
Step 1: |
---|
We use -substitution. Let . Then, and . Also, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Therefore, the integral becomes . |
Step 2: |
---|
We now have: |
. |
So, we have |
. |
Final Answer: |
---|
(a) |
(b) |