Difference between revisions of "009B Sample Midterm 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam"> This problem has three parts:
+
<span class="exam"> Evaluate
  
::<span class="exam">a) State the Fundamental Theorem of Calculus.
+
::<span class="exam">a) <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math>
  
::<span class="exam">b) Compute &thinsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt.</math>
+
::<span class="exam">b) <math style="vertical-align: -14px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math>
 
 
::<span class="exam">c) Evaluate <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx.</math>
 
  
  
Line 11: Line 9:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|'''1.''' What does Part 1 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt?</math>
+
|How would you integrate <math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx?</math>
 
|-
 
|-
 
|
 
|
::Part 1 of the Fundamental Theorem of Calculus says that <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt=\sin(x).</math>
+
::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=x^2+x.</math> Then, <math style="vertical-align: -4px">du=(2x+1)~dx.</math>
|-
 
|'''2.''' What does Part 2 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\int_a^b\sec^2x~dx</math> where <math style="vertical-align: -5px">a,b</math> are constants?
 
 
|-
 
|-
 
|
 
|
::Part 2 of the Fundamental Theorem of Calculus says that <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math> where <math style="vertical-align: 0px">F</math> is any antiderivative of <math style="vertical-align: 0px">\sec^2x.</math>
+
::Thus, <math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx=\int \sqrt{u}=\frac{2}{3}u^{3/2}+C=\frac{2}{3}(x^2+x)^{3/2}+C.</math>
 
|}
 
|}
  
Line 25: Line 21:
  
 
'''(a)'''
 
'''(a)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|The Fundamental Theorem of Calculus has two parts.
+
|We multiply the product inside the integral to get
 
|-
 
|-
|'''The Fundamental Theorem of Calculus, Part 1'''
+
| &nbsp;&nbsp; <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt=\int_1^2 (8t^3+2-15t^{-3})~dt</math>.
|-
 
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>.
 
|-
 
|Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math>, and <math style="vertical-align: -5px">F'(x)=f(x)</math>.
 
 
|}
 
|}
  
Line 41: Line 32:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|'''The Fundamental Theorem of Calculus, Part 2'''
+
|We integrate to get
 
|-
 
|-
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f</math>.
+
| &nbsp;&nbsp; <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2</math>.
 
|-
 
|-
|Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>.
+
|We now evaluate to get
 +
|-
 +
| &nbsp;&nbsp; <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math>.
 
|}
 
|}
 +
 
'''(b)'''
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math style="vertical-align: -15px">F(x)=\int_0^{\cos (x)}\sin (t)~dt</math>. The problem is asking us to find <math style="vertical-align: -5px">F'(x)</math>.
+
|We use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=x^4+2x^2+4</math>. Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx</math>. Also, we need to change the bounds of integration.  
 
|-
 
|-
|Let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -14px">G(x)=\int_0^x \sin(t)~dt</math>.
+
|Plugging in our values into the equation <math style="vertical-align: -2px">u=x^4+2x^2+4</math>, we get <math style="vertical-align: -5px">u_1=0^4+2(0)^2+4=4</math> and <math style="vertical-align: -4px">u_2=2^4+2(2)^2+4=28</math>.
 
|-
 
|-
|Then, <math style="vertical-align: -5px">F(x)=G(g(x))</math>.
+
|Therefore, the integral becomes&nbsp; <math style="vertical-align: -14px">\frac{1}{4}\int_4^{28}\sqrt{u}~du</math>.
 +
|-
 +
|
 
|}
 
|}
  
Line 62: Line 57:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|If we take the derivative of both sides of the last equation, we get <math style="vertical-align: -5px">F'(x)=G'(g(x))g'(x)</math> by the Chain Rule.
+
|We now have:
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, <math style="vertical-align: -5px">g'(x)=-\sin(x)</math> and <math style="vertical-align: -5px">G'(x)=\sin(x)</math> by the '''Fundamental Theorem of Calculus, Part 1'''.
 
|-
 
|Since <math style="vertical-align: -6px">G'(g(x))=\sin(g(x))=\sin(\cos(x))</math>, we have <math style="vertical-align: -5px">F'(x)=G'(g(x))\cdot g'(x)=\sin(\cos(x))\cdot(-\sin(x))</math>.
 
|}
 
 
 
'''(c)'''
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
| Using the '''Fundamental Theorem of Calculus, Part 2''', we have
 
 
|-
 
|-
| &nbsp;&nbsp; <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan(x)\biggr|_{0}^{\pi/4}</math>
+
| &nbsp;&nbsp; <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{1}{4}\int_4^{28}\sqrt{u}~du=\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}=\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})=\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)=\frac{1}{6}((2\sqrt{7})^3-2^3)</math>.
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
 
|-
 
|-
|So, we get
+
|So, we have
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1</math>.
+
| &nbsp;&nbsp; <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}</math>.
|-
 
|
 
 
|}
 
|}
  
Line 96: Line 69:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|'''(a)''' &nbsp; <math>\frac{211}{8}</math>
|-
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>.
 
|-
 
|Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math>, and <math style="vertical-align: -5px">F'(x)=f(x)</math>.
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f</math>.
 
|-
 
|Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>.
 
|-
 
|'''(b)''' &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x))</math>.
 
 
|-
 
|-
|'''(c)''' <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1</math>.
+
|'''(b)''' &nbsp; <math>\frac{28\sqrt{7}-4}{3}</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:17, 5 February 2017

Evaluate

a)
b)


Foundations:  
How would you integrate
You could use -substitution. Let Then,
Thus,

Solution:

(a)

Step 1:  
We multiply the product inside the integral to get
   .
Step 2:  
We integrate to get
   .
We now evaluate to get
   .

(b)

Step 1:  
We use -substitution. Let . Then, and . Also, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Therefore, the integral becomes  .
Step 2:  
We now have:
   .
So, we have
   .
Final Answer:  
(a)  
(b)  

Return to Sample Exam