Difference between revisions of "009B Sample Midterm 2, Problem 2"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
Kayla Murray (talk | contribs)  | 
				Kayla Murray (talk | contribs)   | 
				||
| Line 1: | Line 1: | ||
| − | <span class="exam">   | + | <span class="exam"> Evaluate  | 
| − | ::<span class="exam">a)   | + | ::<span class="exam">a) <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math>   | 
| − | ::<span class="exam">b)   | + | ::<span class="exam">b) <math style="vertical-align: -14px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math>  | 
| − | |||
| − | |||
| Line 11: | Line 9: | ||
!Foundations:      | !Foundations:      | ||
|-  | |-  | ||
| − | |  | + | |How would you integrate <math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx?</math>  | 
|-  | |-  | ||
|  | |  | ||
| − | ::  | + | ::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=x^2+x.</math> Then, <math style="vertical-align: -4px">du=(2x+1)~dx.</math>  | 
| − | |||
| − | |||
|-  | |-  | ||
|  | |  | ||
| − | ::  | + | ::Thus, <math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx=\int \sqrt{u}=\frac{2}{3}u^{3/2}+C=\frac{2}{3}(x^2+x)^{3/2}+C.</math>  | 
|}  | |}  | ||
| Line 25: | Line 21: | ||
'''(a)'''  | '''(a)'''  | ||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
!Step 1:      | !Step 1:      | ||
|-  | |-  | ||
| − | |  | + | |We multiply the product inside the integral to get   | 
|-  | |-  | ||
| − | |  | + | |    <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt=\int_1^2 (8t^3+2-15t^{-3})~dt</math>.    | 
| − | |||
| − | |||
| − | |||
| − | |||
|}  | |}  | ||
| Line 41: | Line 32: | ||
!Step 2:    | !Step 2:    | ||
|-  | |-  | ||
| − | |  | + | |We integrate to get  | 
|-  | |-  | ||
| − | |  | + | |    <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2</math>.  | 
|-  | |-  | ||
| − | |  | + | |We now evaluate to get  | 
| + | |-  | ||
| + | |    <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math>.  | ||
|}  | |}  | ||
| + | |||
'''(b)'''  | '''(b)'''  | ||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
!Step 1:      | !Step 1:      | ||
|-  | |-  | ||
| − | |Let <math style="vertical-align: -  | + | |We use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=x^4+2x^2+4</math>. Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx</math>. Also, we need to change the bounds of integration.    | 
|-  | |-  | ||
| − | |  | + | |Plugging in our values into the equation <math style="vertical-align: -2px">u=x^4+2x^2+4</math>, we get <math style="vertical-align: -5px">u_1=0^4+2(0)^2+4=4</math> and <math style="vertical-align: -4px">u_2=2^4+2(2)^2+4=28</math>.  | 
|-  | |-  | ||
| − | |  | + | |Therefore, the integral becomes  <math style="vertical-align: -14px">\frac{1}{4}\int_4^{28}\sqrt{u}~du</math>.  | 
| + | |-  | ||
| + | |  | ||
|}  | |}  | ||
| Line 62: | Line 57: | ||
!Step 2:    | !Step 2:    | ||
|-  | |-  | ||
| − | |  | + | |We now have:  | 
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|-  | |-  | ||
| − | |    <math>\  | + | |    <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{1}{4}\int_4^{28}\sqrt{u}~du=\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}=\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})=\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)=\frac{1}{6}((2\sqrt{7})^3-2^3)</math>.  | 
| − | |||
| − | |||
| − | |||
| − | |||
|-  | |-  | ||
| − | |So, we   | + | |So, we have   | 
|-  | |-  | ||
| − | |    <math style="vertical-align: -16px">\  | + | |    <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}</math>.  | 
| − | |||
| − | |||
|}  | |}  | ||
| Line 96: | Line 69: | ||
!Final Answer:      | !Final Answer:      | ||
|-  | |-  | ||
| − | |'''(a  | + | |'''(a)'''   <math>\frac{211}{8}</math>  | 
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|-  | |-  | ||
| − | |'''(  | + | |'''(b)'''   <math>\frac{28\sqrt{7}-4}{3}</math>  | 
|}  | |}  | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]  | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]  | ||
Revision as of 09:17, 5 February 2017
Evaluate
- a)
 
- b)
 
| Foundations: | 
|---|
| How would you integrate | 
  | 
  | 
Solution:
(a)
| Step 1: | 
|---|
| We multiply the product inside the integral to get | 
| . | 
| Step 2: | 
|---|
| We integrate to get | 
| . | 
| We now evaluate to get | 
| . | 
(b)
| Step 1: | 
|---|
| We use -substitution. Let . Then, and . Also, we need to change the bounds of integration. | 
| Plugging in our values into the equation , we get and . | 
| Therefore, the integral becomes . | 
| Step 2: | 
|---|
| We now have: | 
| . | 
| So, we have | 
| . | 
| Final Answer: | 
|---|
| (a) | 
| (b) |