Difference between revisions of "009B Sample Midterm 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam"> This problem has three parts: |
− | ::<span class="exam">a) | + | ::<span class="exam">a) State the Fundamental Theorem of Calculus. |
− | |||
+ | ::<span class="exam">b) Compute   <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt.</math> | ||
+ | |||
+ | ::<span class="exam">c) Evaluate <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx.</math> | ||
Line 9: | Line 11: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |'''1.''' What does Part 1 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt?</math> |
|- | |- | ||
− | | | + | | |
+ | ::Part 1 of the Fundamental Theorem of Calculus says that <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt=\sin(x).</math> | ||
|- | |- | ||
− | |'''2.''' | + | |'''2.''' What does Part 2 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\int_a^b\sec^2x~dx</math> where <math style="vertical-align: -5px">a,b</math> are constants? |
|- | |- | ||
− | | | + | | |
+ | ::Part 2 of the Fundamental Theorem of Calculus says that <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math> where <math style="vertical-align: 0px">F</math> is any antiderivative of <math style="vertical-align: 0px">\sec^2x.</math> | ||
|} | |} | ||
Line 21: | Line 25: | ||
'''(a)''' | '''(a)''' | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |The Fundamental Theorem of Calculus has two parts. |
|- | |- | ||
− | | | + | |'''The Fundamental Theorem of Calculus, Part 1''' |
|- | |- | ||
− | | | + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>. |
+ | |- | ||
+ | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math>, and <math style="vertical-align: -5px">F'(x)=f(x)</math>. | ||
|} | |} | ||
Line 34: | Line 41: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |'''The Fundamental Theorem of Calculus, Part 2''' |
|- | |- | ||
− | | | + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f</math>. |
|- | |- | ||
− | | | + | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>. |
|} | |} | ||
+ | '''(b)''' | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Let <math style="vertical-align: | + | |Let <math style="vertical-align: -15px">F(x)=\int_0^{\cos (x)}\sin (t)~dt</math>. The problem is asking us to find <math style="vertical-align: -5px">F'(x)</math>. |
+ | |- | ||
+ | |Let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -14px">G(x)=\int_0^x \sin(t)~dt</math>. | ||
|- | |- | ||
− | | | + | |Then, <math style="vertical-align: -5px">F(x)=G(g(x))</math>. |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
|- | |- | ||
− | | | + | |If we take the derivative of both sides of the last equation, we get <math style="vertical-align: -5px">F'(x)=G'(g(x))g'(x)</math> by the Chain Rule. |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 3: | ||
+ | |- | ||
+ | |Now, <math style="vertical-align: -5px">g'(x)=-\sin(x)</math> and <math style="vertical-align: -5px">G'(x)=\sin(x)</math> by the '''Fundamental Theorem of Calculus, Part 1'''. | ||
+ | |- | ||
+ | |Since <math style="vertical-align: -6px">G'(g(x))=\sin(g(x))=\sin(\cos(x))</math>, we have <math style="vertical-align: -5px">F'(x)=G'(g(x))\cdot g'(x)=\sin(\cos(x))\cdot(-\sin(x))</math>. | ||
+ | |} | ||
+ | |||
+ | '''(c)''' | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 1: | ||
+ | |- | ||
+ | | Using the '''Fundamental Theorem of Calculus, Part 2''', we have | ||
|- | |- | ||
− | | | + | | <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan(x)\biggr|_{0}^{\pi/4}</math> |
|} | |} | ||
Line 57: | Line 86: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |So, | + | |So, we get |
|- | |- | ||
− | | <math>\ | + | | <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1</math>. |
|- | |- | ||
− | | | + | | |
− | |||
− | |||
|} | |} | ||
Line 69: | Line 96: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' The | + | |'''(a)''' |
+ | |- | ||
+ | |'''The Fundamental Theorem of Calculus, Part 1''' | ||
+ | |- | ||
+ | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>. | ||
+ | |- | ||
+ | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math>, and <math style="vertical-align: -5px">F'(x)=f(x)</math>. | ||
+ | |- | ||
+ | |'''The Fundamental Theorem of Calculus, Part 2''' | ||
+ | |- | ||
+ | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f</math>. | ||
+ | |- | ||
+ | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>. | ||
+ | |- | ||
+ | |'''(b)''' <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x))</math>. | ||
|- | |- | ||
− | |'''( | + | |'''(c)''' <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1</math>. |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 10:16, 5 February 2017
This problem has three parts:
- a) State the Fundamental Theorem of Calculus.
- b) Compute
- c) Evaluate
Foundations: |
---|
1. What does Part 1 of the Fundamental Theorem of Calculus say about |
|
2. What does Part 2 of the Fundamental Theorem of Calculus say about where are constants? |
|
Solution:
(a)
Step 1: |
---|
The Fundamental Theorem of Calculus has two parts. |
The Fundamental Theorem of Calculus, Part 1 |
Let be continuous on and let . |
Then, is a differentiable function on , and . |
Step 2: |
---|
The Fundamental Theorem of Calculus, Part 2 |
Let be continuous on and let be any antiderivative of . |
Then, . |
(b)
Step 1: |
---|
Let . The problem is asking us to find . |
Let and . |
Then, . |
Step 2: |
---|
If we take the derivative of both sides of the last equation, we get by the Chain Rule. |
Step 3: |
---|
Now, and by the Fundamental Theorem of Calculus, Part 1. |
Since , we have . |
(c)
Step 1: |
---|
Using the Fundamental Theorem of Calculus, Part 2, we have |
Step 2: |
---|
So, we get |
. |
Final Answer: |
---|
(a) |
The Fundamental Theorem of Calculus, Part 1 |
Let be continuous on and let . |
Then, is a differentiable function on , and . |
The Fundamental Theorem of Calculus, Part 2 |
Let be continuous on and let be any antiderivative of . |
Then, . |
(b) . |
(c) . |