Difference between revisions of "009A Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> ::<span class="exam">a) ::<span class="exam">b) {| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations:   |- | |- | :: |...")
 
Line 1: Line 1:
<span class="exam">
+
<span class="exam">Consider the following function <math> f:</math>
 +
::::::<math>f(x) = \left\{
 +
    \begin{array}{lr}
 +
      x^2 &  \text{if }x < 1\\
 +
      \sqrt{x} & \text{if }x \geq 1
 +
    \end{array}
 +
  \right.
 +
</math>
 +
 
 +
::<span class="exam">a) Find <math> \lim_{x\rightarrow 1^-} f(x).</math>
 +
::<span class="exam">b) Find <math> \lim_{x\rightarrow 1^+} f(x).</math>
 +
::<span class="exam">c) Find <math> \lim_{x\rightarrow 1} f(x).</math>
 +
::<span class="exam">d) Is <math>f</math> continuous at <math>x=1?</math> Briefly explain.
  
::<span class="exam">a)
 
::<span class="exam">b)
 
  
  
Line 37: Line 47:
  
 
'''(b)'''
 
'''(b)'''
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1: &nbsp;
 +
|-
 +
|
 +
|-
 +
|
 +
|-
 +
|
 +
|-
 +
|
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|
 +
|-
 +
|
 +
|-
 +
|
 +
|-
 +
|
 +
|}
 +
 +
'''(c)'''
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1: &nbsp;
 +
|-
 +
|
 +
|-
 +
|
 +
|-
 +
|
 +
|-
 +
|
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|
 +
|-
 +
|
 +
|-
 +
|
 +
|-
 +
|
 +
|}
 +
 +
'''(d)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
Line 66: Line 126:
 
|'''(a)'''  
 
|'''(a)'''  
 
|-
 
|-
|'''(b)'''  
+
|'''(b)'''
 +
|-
 +
|'''(c)'''
 +
|-
 +
|'''(d)'''  
 
|}
 
|}
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 09:57, 5 February 2017

Consider the following function

a) Find
b) Find
c) Find
d) Is continuous at Briefly explain.


Foundations:  

Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  

(d)

Step 1:  
Step 2:  
Final Answer:  
(a)
(b)
(c)
(d)

Return to Sample Exam