Difference between revisions of "009C Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam"> Find the sum of the following series: | <span class="exam"> Find the sum of the following series: | ||
− | <span class="exam">a) <math>\sum_{n=0}^{\infty} (-2)^ne^{-n}</math> | + | ::<span class="exam">a) <math>\sum_{n=0}^{\infty} (-2)^ne^{-n}</math> |
− | <span class="exam">b) <math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math> | + | ::<span class="exam">b) <math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math> |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 10: | Line 10: | ||
|Recall: | |Recall: | ||
|- | |- | ||
− | |'''1.''' For a geometric series <math>\sum_{n=0}^{\infty} ar^n</math> with <math>|r|<1,</math> | + | | |
+ | ::'''1.''' For a geometric series <math>\sum_{n=0}^{\infty} ar^n</math> with <math>|r|<1,</math> | ||
|- | |- | ||
| | | | ||
− | ::<math>\sum_{n=0}^{\infty} ar^n=\frac{a}{1-r}.</math> | + | :::<math>\sum_{n=0}^{\infty} ar^n=\frac{a}{1-r}.</math> |
|- | |- | ||
− | |'''2.''' For a telescoping series, we find the sum by first looking at the partial sum <math style="vertical-align: -3px">s_k</math> | + | | |
+ | ::'''2.''' For a telescoping series, we find the sum by first looking at the partial sum <math style="vertical-align: -3px">s_k</math> | ||
|- | |- | ||
| | | | ||
− | ::and then calculate <math style="vertical-align: -14px">\lim_{k\rightarrow\infty} s_k.</math> | + | :::and then calculate <math style="vertical-align: -14px">\lim_{k\rightarrow\infty} s_k.</math> |
|} | |} | ||
Line 44: | Line 46: | ||
|- | |- | ||
| | | | ||
− | ::<math>\sum_{n=0}^{\infty} (-2)^ne^{-n}=\frac{1}{1+\frac{2}{e}}=\frac{1}{\frac{e+2}{e}}=\frac{e}{e+2}.</math> | + | ::<math>\begin{array}{rcl} |
+ | \displaystyle{\sum_{n=0}^{\infty} (-2)^ne^{-n}} & = & \displaystyle{\frac{1}{1+\frac{2}{e}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{\frac{e+2}{e}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{e}{e+2}.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 56: | Line 64: | ||
|Let <math style="vertical-align: -20px">s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math> | |Let <math style="vertical-align: -20px">s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math> | ||
|- | |- | ||
− | |Then, <math style="vertical-align: -14px">s_k=\frac{1}{2}-\frac{1}{2^{k+1}}.</math> | + | |Then, |
+ | |- | ||
+ | | | ||
+ | ::<math style="vertical-align: -14px">s_k=\frac{1}{2}-\frac{1}{2^{k+1}}.</math> | ||
|} | |} | ||
Line 65: | Line 76: | ||
|- | |- | ||
| | | | ||
− | ::<math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)=\lim_{k\rightarrow \infty} s_k=\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}=\frac{1}{2}.</math> | + | ::<math>\begin{array}{rcl} |
+ | \displaystyle{\sum_{n=1}^{\infty}\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)} & = & \displaystyle{\lim_{k\rightarrow \infty} s_k}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{2}.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' <math>\frac{e}{e+2}</math> | + | | '''(a)''' <math>\frac{e}{e+2}</math> |
|- | |- | ||
− | |'''(b)''' <math>\frac{1}{2}</math> | + | | '''(b)''' <math>\frac{1}{2}</math> |
|} | |} | ||
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 18:26, 18 April 2016
Find the sum of the following series:
- a)
- b)
Foundations: |
---|
Recall: |
|
|
|
|
Solution:
(a)
Step 1: |
---|
First, we write |
|
Step 2: |
---|
Since So, |
|
(b)
Step 1: |
---|
This is a telescoping series. First, we find the partial sum of this series. |
Let |
Then, |
|
Step 2: |
---|
Thus, |
|
Final Answer: |
---|
(a) |
(b) |