Difference between revisions of "009B Sample Midterm 3, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 38: | Line 38: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |We start by writing <math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math> | + | |We start by writing |
| + | |- | ||
| + | | | ||
| + | ::<math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math> | ||
|- | |- | ||
|Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have | |Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have | ||
| Line 53: | Line 56: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Now, we need to use <math>u</math>-substitution for the first integral. Let <math style="vertical-align: -5px">u=\tan(x).</math> Then, <math style="vertical-align: -1px">du=\sec^2x~dx.</math> So, we have | + | |Now, we need to use <math>u</math>-substitution for the first integral. |
| + | |- | ||
| + | | | ||
| + | ::Let <math style="vertical-align: -5px">u=\tan(x).</math> Then, <math style="vertical-align: -1px">du=\sec^2x~dx.</math> So, we have | ||
|- | |- | ||
| | | | ||
| Line 68: | Line 74: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | |For the remaining integral, we also need to use <math>u</math>-substitution. First, we write <math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math> | + | |For the remaining integral, we also need to use <math>u</math>-substitution. |
| + | |- | ||
| + | |First, we write | ||
| + | |- | ||
| + | | | ||
| + | ::<math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math> | ||
|- | |- | ||
|Now, we let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> So, we get | |Now, we let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> So, we get | ||
| Line 86: | Line 97: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |One of the double angle formulas is <math style="vertical-align: -5px">\cos(2x)=1-2\sin^2(x).</math> Solving for <math style="vertical-align: -5px">\sin^2(x),</math> we get <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}.</math> | + | |One of the double angle formulas is <math style="vertical-align: -5px">\cos(2x)=1-2\sin^2(x).</math> |
| + | |- | ||
| + | |Solving for <math style="vertical-align: -5px">\sin^2(x),</math> we get <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}.</math> | ||
|- | |- | ||
|Plugging this identity into our integral, we get | |Plugging this identity into our integral, we get | ||
| Line 114: | Line 127: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | |For the remaining integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -1px">u=2x.</math> Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -18px">\frac{du}{2}=dx.</math> Also, since this is a definite integral | + | |For the remaining integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. |
| − | + | |- | |
| − | + | |Let <math style="vertical-align: -1px">u=2x.</math> Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -18px">\frac{du}{2}=dx.</math> | |
| + | |- | ||
| + | |Also, since this is a definite integral and we are using <math style="vertical-align: 0px">u</math>-substitution, we need to change the bounds of integration. | ||
| + | |- | ||
| + | |We have <math style="vertical-align: -5px">u_1=2(0)=0</math> and <math style="vertical-align: -5px">u_2=2(\pi)=2\pi.</math> | ||
|- | |- | ||
|So, the integral becomes | |So, the integral becomes | ||
| Line 135: | Line 152: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' <math>\frac{\tan^2x}{2}+\ln |\cos x|+C</math> | + | | '''(a)''' <math>\frac{\tan^2x}{2}+\ln |\cos x|+C</math> |
|- | |- | ||
| − | |'''(b)''' <math>\frac{\pi}{2}</math> | + | | '''(b)''' <math>\frac{\pi}{2}</math> |
|} | |} | ||
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 18:10, 18 April 2016
Evaluate the indefinite and definite integrals.
- a)
- b)
| Foundations: |
|---|
| Recall the trig identities: |
| 1. |
| 2. |
| How would you integrate |
|
|
|
|
Solution:
(a)
| Step 1: |
|---|
| We start by writing |
|
|
| Since we have |
|
|
| Step 2: |
|---|
| Now, we need to use -substitution for the first integral. |
|
|
|
| Step 3: |
|---|
| For the remaining integral, we also need to use -substitution. |
| First, we write |
|
|
| Now, we let Then, So, we get |
|
|
(b)
| Step 1: |
|---|
| One of the double angle formulas is |
| Solving for we get |
| Plugging this identity into our integral, we get |
|
|
| Step 2: |
|---|
| If we integrate the first integral, we get |
|
|
| Step 3: |
|---|
| For the remaining integral, we need to use -substitution. |
| Let Then, and |
| Also, since this is a definite integral and we are using -substitution, we need to change the bounds of integration. |
| We have and |
| So, the integral becomes |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |