Difference between revisions of "009B Sample Midterm 3, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 7: | Line 7: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |Integration by parts tells us that <math style="vertical-align: -12px">\int u~dv=uv-\int vdu.</math> | + | |'''1.''' Integration by parts tells us that <math style="vertical-align: -12px">\int u~dv=uv-\int vdu.</math> |
|- | |- | ||
− | |How could we break up <math style="vertical-align: -5px">\sin (\ln x)~dx</math> into <math style="vertical-align: -1px">u</math> and <math style="vertical-align: -1px">dv?</math> | + | |'''2.''' How could we break up <math style="vertical-align: -5px">\sin (\ln x)~dx</math> into <math style="vertical-align: -1px">u</math> and <math style="vertical-align: -1px">dv?</math> |
|- | |- | ||
| | | | ||
Line 19: | Line 19: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We proceed using integration by parts. Let <math style="vertical-align: -6px">u=\sin(\ln x)</math> and <math style="vertical-align: -1px">dv=dx.</math> Then, <math style="vertical-align: -14px">du=\cos(\ln x)\frac{1}{x}dx</math> and <math style="vertical-align: -1px">v=x.</math> | + | |We proceed using integration by parts. |
+ | |- | ||
+ | |Let <math style="vertical-align: -6px">u=\sin(\ln x)</math> and <math style="vertical-align: -1px">dv=dx.</math> Then, <math style="vertical-align: -14px">du=\cos(\ln x)\frac{1}{x}dx</math> and <math style="vertical-align: -1px">v=x.</math> | ||
|- | |- | ||
|Therefore, we get | |Therefore, we get | ||
Line 30: | Line 32: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we need to use integration by parts again. Let <math style="vertical-align: -6px">u=\cos(\ln x)</math> and <math style="vertical-align: -1px">dv=dx.</math> Then, <math style="vertical-align: -14px">du=-\sin(\ln x)\frac{1}{x}dx</math> and <math style="vertical-align: -1px">v=x.</math> | + | |Now, we need to use integration by parts again. |
+ | |- | ||
+ | |Let <math style="vertical-align: -6px">u=\cos(\ln x)</math> and <math style="vertical-align: -1px">dv=dx.</math> Then, <math style="vertical-align: -14px">du=-\sin(\ln x)\frac{1}{x}dx</math> and <math style="vertical-align: -1px">v=x.</math> | ||
|- | |- | ||
|Therfore, we get | |Therfore, we get | ||
Line 50: | Line 54: | ||
|- | |- | ||
| | | | ||
− | ::<math>2\int \sin(\ln x)~dx=x\sin(\ln x)-x\cos(\ln x)</math> | + | ::<math>2\int \sin(\ln x)~dx=x\sin(\ln x)-x\cos(\ln x).</math> |
|- | |- | ||
|Now, we divide both sides by 2 to get | |Now, we divide both sides by 2 to get | ||
Line 66: | Line 70: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |<math>\frac{x}{2}(\sin(\ln x)-\cos(\ln x))+C</math> | + | | <math>\frac{x}{2}(\sin(\ln x)-\cos(\ln x))+C</math> |
|} | |} | ||
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 18:05, 18 April 2016
Evaluate the integral:
Foundations: |
---|
1. Integration by parts tells us that |
2. How could we break up into and |
|
Solution:
Step 1: |
---|
We proceed using integration by parts. |
Let and Then, and |
Therefore, we get |
|
Step 2: |
---|
Now, we need to use integration by parts again. |
Let and Then, and |
Therfore, we get |
|
Step 3: |
---|
Notice that the integral on the right of the last equation is the same integral that we had at the beginning. |
So, if we add the integral on the right to the other side of the equation, we get |
|
Now, we divide both sides by 2 to get |
|
Thus, the final answer is |
|
Final Answer: |
---|