Difference between revisions of "009B Sample Midterm 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|Integration by parts tells us that <math style="vertical-align: -12px">\int u~dv=uv-\int vdu.</math>
+
|'''1.''' Integration by parts tells us that <math style="vertical-align: -12px">\int u~dv=uv-\int vdu.</math>
 
|-
 
|-
|How could we break up <math style="vertical-align: -5px">\sin (\ln x)~dx</math> into <math style="vertical-align: -1px">u</math> and <math style="vertical-align: -1px">dv?</math>
+
|'''2.''' How could we break up <math style="vertical-align: -5px">\sin (\ln x)~dx</math> into <math style="vertical-align: -1px">u</math> and <math style="vertical-align: -1px">dv?</math>
 
|-
 
|-
 
|
 
|
Line 19: Line 19:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We proceed using integration by parts. Let <math style="vertical-align: -6px">u=\sin(\ln x)</math> and <math style="vertical-align: -1px">dv=dx.</math> Then, <math style="vertical-align: -14px">du=\cos(\ln x)\frac{1}{x}dx</math> and <math style="vertical-align: -1px">v=x.</math>
+
|We proceed using integration by parts.  
 +
|-
 +
|Let <math style="vertical-align: -6px">u=\sin(\ln x)</math> and <math style="vertical-align: -1px">dv=dx.</math> Then, <math style="vertical-align: -14px">du=\cos(\ln x)\frac{1}{x}dx</math> and <math style="vertical-align: -1px">v=x.</math>
 
|-
 
|-
 
|Therefore, we get  
 
|Therefore, we get  
Line 30: Line 32:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we need to use integration by parts again. Let <math style="vertical-align: -6px">u=\cos(\ln x)</math> and <math style="vertical-align: -1px">dv=dx.</math> Then, <math style="vertical-align: -14px">du=-\sin(\ln x)\frac{1}{x}dx</math> and <math style="vertical-align: -1px">v=x.</math>  
+
|Now, we need to use integration by parts again.  
 +
|-
 +
|Let <math style="vertical-align: -6px">u=\cos(\ln x)</math> and <math style="vertical-align: -1px">dv=dx.</math> Then, <math style="vertical-align: -14px">du=-\sin(\ln x)\frac{1}{x}dx</math> and <math style="vertical-align: -1px">v=x.</math>  
 
|-
 
|-
 
|Therfore, we get  
 
|Therfore, we get  
Line 50: Line 54:
 
|-
 
|-
 
|
 
|
::<math>2\int \sin(\ln x)~dx=x\sin(\ln x)-x\cos(\ln x)</math>.
+
::<math>2\int \sin(\ln x)~dx=x\sin(\ln x)-x\cos(\ln x).</math>
 
|-
 
|-
 
|Now, we divide both sides by 2 to get  
 
|Now, we divide both sides by 2 to get  
Line 66: Line 70:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|<math>\frac{x}{2}(\sin(\ln x)-\cos(\ln x))+C</math>
+
|&nbsp;&nbsp; <math>\frac{x}{2}(\sin(\ln x)-\cos(\ln x))+C</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:05, 18 April 2016

Evaluate the integral:


Foundations:  
1. Integration by parts tells us that
2. How could we break up into and
Notice that is one term. So, we need to let and

Solution:

Step 1:  
We proceed using integration by parts.
Let and Then, and
Therefore, we get
Step 2:  
Now, we need to use integration by parts again.
Let and Then, and
Therfore, we get
Step 3:  
Notice that the integral on the right of the last equation is the same integral that we had at the beginning.
So, if we add the integral on the right to the other side of the equation, we get
Now, we divide both sides by 2 to get
Thus, the final answer is
Final Answer:  
  

Return to Sample Exam