Difference between revisions of "009B Sample Midterm 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|How would you integrate <math>2x(x^2+1)^3~dx?</math>
+
|How would you integrate <math style="vertical-align: -5px">2x(x^2+1)^3~dx?</math>
 
|-
 
|-
 
|
 
|
::You could use <math>u</math>-substitution. Let <math>u=x^2+1.</math> Then, <math>du=2x~dx.</math> Thus,
+
::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -3px">u=x^2+1.</math> Then, <math style="vertical-align: -1px">du=2x~dx.</math> Thus,
 
|-
 
|-
 
|
 
|
Line 29: Line 29:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We proceed using <math>u</math>-substitution. Let <math>u=x^3.</math> Then, <math>du=3x^2~dx</math> and <math>\frac{du}{3}=x^2~dx.</math>
+
|We proceed using <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -1px">u=x^3.</math> Then, <math style="vertical-align: -1px">du=3x^2~dx</math> and <math style="vertical-align: -14px">\frac{du}{3}=x^2~dx.</math>
 
|-
 
|-
 
|Therefore, we have
 
|Therefore, we have
Line 54: Line 54:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Again, we proceed using u substitution. Let <math>u=\cos(x).</math> Then, <math>du=-\sin(x)~dx.</math>  
+
|Again, we proceed using u substitution. Let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)~dx.</math>  
 
|-
 
|-
 
|Since this is a definite integral, we need to change the bounds of integration.  
 
|Since this is a definite integral, we need to change the bounds of integration.  
 
|-
 
|-
|We have <math>u_1=\cos\bigg(-\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math>u_2=\cos\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}.</math>
+
|We have <math style="vertical-align: -15px">u_1=\cos\bigg(-\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -15px">u_2=\cos\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}.</math>
 
|}
 
|}
  

Revision as of 18:06, 29 March 2016

Compute the following integrals:

a)
b)


Foundations:  
How would you integrate
You could use -substitution. Let Then, Thus,

Solution:

(a)

Step 1:  
We proceed using -substitution. Let Then, and
Therefore, we have
Step 2:  
We integrate to get

(b)

Step 1:  
Again, we proceed using u substitution. Let Then,
Since this is a definite integral, we need to change the bounds of integration.
We have and
Step 2:  
So, we get
Final Answer:  
(a)
(b)

Return to Sample Exam