Difference between revisions of "009B Sample Midterm 3, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 14: | Line 14: | ||
|- | |- | ||
| | | | ||
| − | ::<math>\int 2x(x^2+1)^3~dx=\int u^3~du=\frac{u^4}{4}+C=\frac{(x^2+1)^4}{4}+C.</math> | + | ::<math>\begin{array}{rcl} |
| + | \displaystyle{\int 2x(x^2+1)^3~dx} & = & \displaystyle{\int u^3~du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{u^4}{4}+C}\\ | ||
| + | && \\ | ||
| + | & = & \displaystyle{\frac{(x^2+1)^4}{4}+C.}\\ | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 37: | Line 43: | ||
|- | |- | ||
| | | | ||
| − | ::<math>\int x^2\sin (x^3) ~dx=\frac{-1}{3}\cos(u)+C=\frac{-1}{3}\cos(x^3)+C.</math> | + | ::::<math>\begin{array}{rcl} |
| + | \displaystyle{\int x^2\sin (x^3) ~dx} & = & \displaystyle{\frac{-1}{3}\cos(u)+C}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{-1}{3}\cos(x^3)+C.}\\ | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 57: | Line 67: | ||
|- | |- | ||
| | | | ||
| − | ::<math>\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx=\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du=\left.\frac{-u^3}{3}\right|_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}=0.</math> | + | ::<math>\begin{array}{rcl} |
| + | \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\left.\frac{-u^3}{3}\right|_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{0.} \\ | ||
| + | \end{array}</math> | ||
|} | |} | ||
Revision as of 17:02, 29 March 2016
Compute the following integrals:
- a)
- b)
| Foundations: |
|---|
| How would you integrate |
|
|
|
Solution:
(a)
| Step 1: |
|---|
| We proceed using -substitution. Let Then, and |
| Therefore, we have |
|
|
| Step 2: |
|---|
| We integrate to get |
|
|
(b)
| Step 1: |
|---|
| Again, we proceed using u substitution. Let Then, |
| Since this is a definite integral, we need to change the bounds of integration. |
| We have and |
| Step 2: |
|---|
| So, we get |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |