Difference between revisions of "009B Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 17: Line 17:
 
|-
 
|-
 
|
 
|
::You could use <math>u</math>-substitution. First, write <math>\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx</math>.
+
::You could use <math>u</math>-substitution. First, write <math>\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math>
 
|-
 
|-
 
|
 
|
::Now, let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx</math>.
+
::Now, let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx.</math>
 
|-
 
|-
 
|
 
|
::Thus, <math>\int \tan x~dx=\int \frac{-1}{u}~du=-\ln(u)+C=-\ln|\cos x|+C</math>.
+
::Thus, <math>\int \tan x~dx=\int \frac{-1}{u}~du=-\ln(u)+C=-\ln|\cos x|+C.</math>
 
|}
 
|}
  
Line 32: Line 32:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We start by writing <math>\int \tan^3x~dx=\int \tan^2x\tan x ~dx</math>.
+
|We start by writing <math>\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math>  
 
|-
 
|-
|Since <math>\tan^2x=\sec^2x-1</math>, we have  
+
|Since <math>\tan^2x=\sec^2x-1,</math> we have  
 
|-
 
|-
 
|
 
|
::<math>\int \tan^3x~dx=\int (\sec^2x-1)\tan x ~dx=\int \sec^2x\tan x~dx-\int \tan x~dx</math>.
+
::<math>\int \tan^3x~dx=\int (\sec^2x-1)\tan x ~dx=\int \sec^2x\tan x~dx-\int \tan x~dx.</math>  
 
|}
 
|}
  
Line 43: Line 43:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we need to use <math>u</math>-substitution for the first integral. Let <math>u=\tan(x)</math>. Then, <math>du=\sec^2xdx</math>. So, we have
+
|Now, we need to use <math>u</math>-substitution for the first integral. Let <math>u=\tan(x).</math> Then, <math>du=\sec^2x~dx.</math> So, we have
 
|-
 
|-
 
|
 
|
::<math>\int \tan^3x~dx=\int u~du-\int \tan x~dx=\frac{u^2}{2}-\int \tan x~dx=\frac{\tan^2x}{2}-\int \tan x~dx</math>.
+
::<math>\int \tan^3x~dx=\int u~du-\int \tan x~dx=\frac{u^2}{2}-\int \tan x~dx=\frac{\tan^2x}{2}-\int \tan x~dx.</math>
 
|}
 
|}
  
Line 52: Line 52:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|For the remaining integral, we also need to use <math>u</math>-substitution. First, we write <math>\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx</math>.
+
|For the remaining integral, we also need to use <math>u</math>-substitution. First, we write <math>\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math>
 
|-
 
|-
|Now, we let <math>u=\cos x</math>. Then, <math>du=-\sin xdx</math>. So, we get  
+
|Now, we let <math>u=\cos x.</math> Then, <math>du=-\sin x~dx.</math> So, we get  
 
|-
 
|-
 
|
 
|
::<math>\int \tan^3x~dx=\frac{\tan^2x}{2}+\int \frac{1}{u}~dx=\frac{\tan^2x}{2}+\ln |u|+C=\frac{\tan^2x}{2}+\ln |\cos x|+C</math>.
+
::<math>\int \tan^3x~dx=\frac{\tan^2x}{2}+\int \frac{1}{u}~dx=\frac{\tan^2x}{2}+\ln |u|+C=\frac{\tan^2x}{2}+\ln |\cos x|+C.</math>
 
|}
 
|}
 
'''(b)'''
 
'''(b)'''
Line 63: Line 63:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|One of the double angle formulas is <math>\cos(2x)=1-2\sin^2(x)</math>. Solving for <math>\sin^2(x)</math>, we get <math>\sin^2(x)=\frac{1-\cos(2x)}{2}</math>.
+
|One of the double angle formulas is <math>\cos(2x)=1-2\sin^2(x).</math> Solving for <math>\sin^2(x)</math>, we get <math>\sin^2(x)=\frac{1-\cos(2x)}{2}.</math>
 
|-
 
|-
 
|Plugging this identity into our integral, we get  
 
|Plugging this identity into our integral, we get  
 
|-
 
|-
 
|
 
|
::<math>\int_0^\pi \sin^2x~dx=\int_0^\pi \frac{1-\cos(2x)}{2}~dx=\int_0^\pi \frac{1}{2}~dx-\int_0^\pi \frac{\cos(2x)}{2}~dx</math>.
+
::<math>\int_0^\pi \sin^2x~dx=\int_0^\pi \frac{1-\cos(2x)}{2}~dx=\int_0^\pi \frac{1}{2}~dx-\int_0^\pi \frac{\cos(2x)}{2}~dx.</math>  
 
|}
 
|}
  
Line 77: Line 77:
 
|-
 
|-
 
|
 
|
::<math>\int_0^\pi \sin^2x~dx=\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx=\frac{\pi}{2}-\int_0^\pi \frac{\cos(2x)}{2}~dx</math>.
+
::<math>\int_0^\pi \sin^2x~dx=\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx=\frac{\pi}{2}-\int_0^\pi \frac{\cos(2x)}{2}~dx.</math>
 
|}
 
|}
  
Line 83: Line 83:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|For the remaining integral, we need to use <math>u</math>-substitution. Let <math>u=2x</math>. Then, <math>du=2dx</math> and <math>\frac{du}{2}=dx</math>. Also, since this is a definite integral  
+
|For the remaining integral, we need to use <math>u</math>-substitution. Let <math>u=2x.</math> Then, <math>du=2~dx</math> and <math>\frac{du}{2}=dx.</math> Also, since this is a definite integral  
 
|-  
 
|-  
|and we are using <math>u</math>-substitution, we need to change the bounds of integration. We have <math>u_1=2(0)=0</math> and <math>u_2=2(\pi)=2\pi</math>.
+
|and we are using <math>u</math>-substitution, we need to change the bounds of integration. We have <math>u_1=2(0)=0</math> and <math>u_2=2(\pi)=2\pi.</math>
 
|-
 
|-
 
|So, the integral becomes
 
|So, the integral becomes
 
|-
 
|-
 
|
 
|
::<math>\int_0^\pi \sin^2x~dx=\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du=\frac{\pi}{2}-\left.\frac{\sin(u)}{4}\right|_0^{2\pi}=\frac{\pi}{2}-\bigg(\frac{\sin(2\pi)}{4}-\frac{\sin(0)}{4}\bigg)=\frac{\pi}{2}</math>
+
::<math>\int_0^\pi \sin^2x~dx=\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du=\frac{\pi}{2}-\left.\frac{\sin(u)}{4}\right|_0^{2\pi}=\frac{\pi}{2}-\bigg(\frac{\sin(2\pi)}{4}-\frac{\sin(0)}{4}\bigg)=\frac{\pi}{2}.</math>
 
|}
 
|}
  

Revision as of 16:44, 29 March 2016

Evaluate the indefinite and definite integrals.

a)
b)


Foundations:  
Recall the trig identities:
1.
2.
How would you integrate
You could use -substitution. First, write
Now, let . Then,
Thus,

Solution:

(a)

Step 1:  
We start by writing
Since we have
Step 2:  
Now, we need to use -substitution for the first integral. Let Then, So, we have
Step 3:  
For the remaining integral, we also need to use -substitution. First, we write
Now, we let Then, So, we get

(b)

Step 1:  
One of the double angle formulas is Solving for , we get
Plugging this identity into our integral, we get
Step 2:  
If we integrate the first integral, we get
Step 3:  
For the remaining integral, we need to use -substitution. Let Then, and Also, since this is a definite integral
and we are using -substitution, we need to change the bounds of integration. We have and
So, the integral becomes
Final Answer:  
(a)
(b)

Return to Sample Exam