Difference between revisions of "009B Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1.''' <math>\sec^2x=tan^2x+1</math>
+
|'''1.''' <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math>
 
|-
 
|-
|'''2.''' <math>\int \sec^2 x~dx=\tan x+C</math>
+
|'''2.''' <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math>
 
|-
 
|-
|How would you integrate <math>\int \sec^2(x)\tan(x)~dx</math>?
+
|How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math>
 
|-
 
|-
 
|
 
|
::You could use <math>u</math>-substitution. Let <math>u=\tan x</math>. Then, <math>du=\sec^2(x)dx</math>.
+
::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\tan x.</math> Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math>
 
|-
 
|-
 
|
 
|
::Thus, <math>\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C</math>.
+
::Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math>
 
|}
 
|}
  

Revision as of 16:18, 29 March 2016

Evaluate the integral:


Foundations:  
Recall:
1.
2.
How would you integrate
You could use -substitution. Let Then,
Thus,

Solution:

Step 1:  
First, we write .
Using the trig identity , we have .
Plugging in the last identity into one of the , we get
   ,
using the identity again on the last equality.
Step 2:  
So, we have .
For the first integral, we need to use -substitution. Let . Then, .
So, we have
   .
Step 3:  
We integrate to get
   .
Final Answer:  
  

Return to Sample Exam