Difference between revisions of "009B Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|Recall the trig identity: <math>\sin^2x+\cos^2x=1</math>.
+
|Recall the trig identity: <math style="vertical-align: -2px">\sin^2x+\cos^2x=1.</math>
 
|-
 
|-
|How would you integrate <math>\int \sin^2x\cos x~dx</math>?
+
|How would you integrate <math style="vertical-align: -14px">\int \sin^2x\cos x~dx?</math>
 
|-
 
|-
 
|
 
|
::You could use <math>u</math>-substitution. Let <math>u=\sin x</math>. Then, <math>du=\cos xdx</math>.
+
::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\sin x.</math> Then, <math style="vertical-align: -1px">du=\cos x~dx.</math>
 
|-
 
|-
 
|
 
|
::Thus, <math>\int \sin^2x\cos x~dx=\int u^2~du=\frac{u^3}{3}+C=\frac{\sin^3x}{3}+C</math>.
+
::Thus, <math style="vertical-align: -14px">\int \sin^2x\cos x~dx=\int u^2~du=\frac{u^3}{3}+C=\frac{\sin^3x}{3}+C.</math>
 
|}
 
|}
  

Revision as of 10:13, 29 March 2016

Evaluate the integral:


Foundations:  
Recall the trig identity:
How would you integrate
You could use -substitution. Let Then,
Thus,

Solution:

Step 1:  
First, we write .
Using the identity , we get . If we use this identity, we have
    .
Step 2:  
Now, we use -substitution. Let . Then, . Therefore,
   .
Final Answer:  
  

Return to Sample Exam